34.50.Fa Electronic excitation and ionization of atoms (including beam-foil excitation and ionization)
Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- 3-atomic-heteronuclear molecule (1)
- COLTRIMS (1)
- Coulombexplosion (1)
- Electron capture (1)
- Elektronenanlagerungsreaktion (1)
- Ion-Molecule collisions (1)
- Ion-Molekül-Stoß (1)
- Kleines Molekül (1)
- Kohlenstoffmolekül (1)
- Molekularbewegung (1)
Institute
- Physik (4)
Mit der vorliegenden Arbeit wurden zu ersten Mal die seit mehreren Jahren vorhergesagten dynamischen Aufbruchsmechanismen - der direkte, der sequentielle und der asynchrone Zerfall - in mehratomigen Molekülen kinematisch vollständig untersucht. Experimentell wurde hierfür ein Kohlenstoffdioxid-(CO2)-Molekül in langsamen Ion-Molekül Stößen dreifach ionisiert, indem die Elektronen des Targets von den langsamen, hochgeladenen Projektilionen (Ar8+-Ionen) eingefangen wurden. Die Untersuchung des Zerfalls des CO2-Ions in die einfach geladenen ionischen Fragmente C+ + O+ + O+ zeigte, dass bei diesem Zerfall das Projektilion vornehmlich einen positiven Ladungszustand von q = 6 und nicht den zunächst erwarteten Ladungszustand q = 5 aufweist. Dies ist darauf zurückzuführen, dass die eingefangenen Elektronen oftmals elektronisch hoch angeregte Zustände im Projektil populieren und demnach im weiteren Verlauf über Autoionisationsprozesse dieses auch wieder verlassen können. Ähnliche Autoionisationsprozesse können auch im Target ablaufen, treten dort jedoch mit einer geringeren Wahrscheinlichkeit auf, da der Wirkungsquerschnitt für Autoionisationsprozesse im Target um einen Faktor 1,3 kleiner ist als für Autoionisationen im Projektil. Zusätzlich zeigte die Untersuchung der Stoßdynamik, dass der dreifache Elektroneneinfang primär bei einer parallelen Orientierung der Molekülachse zur Projektilstrahlachse auftritt. Eine weitere Abhängigkeit der Stoßdynamik zum Beispiel vom Stoßparameter beziehungsweise vom Streuwinkel konnte nicht beobachtet werden. Durch die koinzidente Messung aller vier Reaktionsteilchen konnte der Kanal Ar8+ + CO2 --> Ar6+ + C+ + O+ + O+ eindeutig bestimmt werden und die Reaktionsdynamik des CO2-Ions nach dem Stoß analysiert werden. Dabei tritt deutlich der direkte Aufbruch hervor, bei welchem die drei einfach geladenen Ionen sich rein aufgrund ihrer Coulombkräfte voneinander abstoßen. Bei einer solchen Coulombexplosion bleibt dem Molekülion kaum Zeit, um eine molekulare Schwingung zu vollführen. Neben diesem schnellen Zerfall konnten aber auch jene Zerfälle beobachtet werden, bei denen das Molekülion zuerst molekular schwingt und dann zu einem späteren Zeitpunkt in die ionischen Fragmente zerfällt. Dieser letztere Zerfallsprozess gehört zu den sogenannten asynchronen Zerfallsmechanismen. Er stellt einen Zwischenprozess zwischen dem reinen 1-Stufen-Prozess wie dem direkten Aufbruch und dem reinen 2-Stufen-Prozess dar. Bei solchen sequentiellen 2-Stufen Prozessen fragmentiert das CO2-Molekül im ersten Schritt in ein O+- und ein CO2+-Ion. Im zweiten Schritt dissoziiert dann das CO2+-Fragment, nachdem es nahezu keine Wirkung der Coulombkräfte des ersten Sauerstoffions mehr spürt, in ein C+- und ein O+-Ion. Durch die Darstellung der Schwerpunktsimpulse der Fragmente in Dalitz- und Newton-Diagrammen ist es mit dieser Arbeit erstmals gelungen diesen sequentiellen Prozess experimentell eindeutig nachzuweisen. In der weiteren Analyse konnte gezeigt werden, dass über die im System deponierte Energie, welche über die kinetische Energie der Fragmente bestimmt wird, die verschiedenen Reaktionsmechanismen direkt kontrolliert werden können. Speziell bei Energien unterhalb von 20 eV wurde gezeigt, dass es keine Potentialflächen gibt, die über einen direkten bzw. simultanen Aufbruch zu dem Endzustand C+ + O+ + O+ führen. Bei mehratomigen Molekülen erweist sich das Treffen detaillierter Aussagen über mögliche Dissoziationskanäle ohne die genaue Kenntnis der Lage der Potentialflächen und den Übergängen zwischen diesen als äußerst schwierig. Selbst bei genauer Kenntnis der Lage und Form der Potentialflächen, ist es aufgrund der hohen Dichten innerhalb der Übergangsbereiche der Potentialflächen nahezu unmöglich, den Verlauf der Dissoziationskanäle zu verfolgen. Mit dieser Arbeit ist es gelungen, die verschiedenen Reaktionskanäle ohne die Existenz von Energiepotentialflächen eindeutig zu identifizieren. Außerdem konnte gezeigt werden, dass die Energie, die während des Stoßes im Molekül deponiert wird, eine Schlüsselgröße darstellt, mit welcher die Fragmentationskanäle direkt kontrolliert werden können.
We present calculations for the impact-parameter dependence of K-shell ionization rates in p¯-Cu and in p¯-Ag collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the antibinding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross sections for protons.
We calculate angular correlations between coincident electron-positron pairs emitted in heavy-ion collisions with nuclear time delay. Special attention is directed to a comparison of supercritical and subcritical systems, where angular correlations of pairs produced in collisions of bare U nuclei are found to alter their sign for nuclear delay times of the order of 2 × 10-21 s. This effect is shown to occur exclusively in supercritical systems, where spontaneous positron creation is active.
Phenomenological consequences of a hypothetical light neutral particle in heavy ion collisions
(1986)
We discuss the possibility that the line structure observed in the spectrum of the positrons produced in heavy ion collisions is due to the decay of a new neutral elementary particle. We argue that this can be ruled out unless one is willing to accept fine tuning of parameters, or to assume the dominance of nonlinear effects.