530 Physik
Refine
Year of publication
Document Type
- Article (1240)
- Doctoral Thesis (549)
- Preprint (343)
- Conference Proceeding (221)
- diplomthesis (127)
- Bachelor Thesis (72)
- Master's Thesis (61)
- Contribution to a Periodical (41)
- Part of Periodical (35)
- Working Paper (31)
Keywords
- Kollisionen schwerer Ionen (47)
- heavy ion collisions (42)
- Quark-Gluon-Plasma (25)
- quark-gluon plasma (17)
- Heavy Ion Experiments (16)
- equation of state (16)
- QGP (15)
- Hadron (14)
- LHC (13)
- Relativistic heavy-ion collisions (12)
Institute
- Physik (2615)
- Frankfurt Institute for Advanced Studies (FIAS) (321)
- Informatik (60)
- Präsidium (54)
- ELEMENTS (40)
- Helmholtz International Center for FAIR (11)
- Biochemie und Chemie (7)
- Biochemie, Chemie und Pharmazie (6)
- Extern (6)
- Geowissenschaften (6)
Direct laser acceleration (DLA) of electrons in a plasma of near-critical electron density (NCD) and the associated synchrotron-like radiation are discussed for moderate relativistic laser intensity (normalized laser amplitude a0 ≤ 4.3) and ps length pulse. This regime is typical of kJ PW-class laser facilities designed for high-energy-density (HED) research. In experiments at the PHELIX facility, it has been demonstrated that interaction of a 1019 W/cm2 sub-ps laser pulse with a sub-mm length NCD plasma results in the generation of high-current well-directed super-ponderomotive electrons with an effective temperature ten times higher than the ponderomotive potential [Rosmej et al., Plasma Phys. Controlled Fusion 62, 115024 (2020)]. Three-dimensional particle-in-cell simulations provide good agreement with the measured electron energy distribution and are used in the current work to study synchrotron radiation from the DLA-accelerated electrons. The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultrahigh photon number of 7 × 1011 in the 1–30 keV photon energy range at the focused laser energy of 20 J. Numerical simulations of betatron x-ray phase contrast imaging based on the DLA process for the parameters of a PHELIX laser are presented. The results are of interest for applications in HED experiments, which require a ps x-ray pulse and a high photon flux.
We introduce a novel approach based on elas- tic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from Elab = 1.23 AGeV to √sNN = 62.4 GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze- out distribution is reconstructed from the pions through sev- eral decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excita- tion reactions. The extracted average temperature and baryon chemical potential are then compared to statistical model analysis. Finally we investigate various freeze-out criteria suggested in the literature. We confirm within this micro- scopic dynamical simulation, that the chemical freeze-out at all energies coincides with ⟨E⟩/⟨N⟩ ≈ 1 GeV, while other criteria, like s/T 3 = 7 and nB +nB ̄ ≈ 0.12 fm−3 are limited to higher collision energies.
The production of light (anti-)nuclei and (anti-)hypernuclei in ultra-relativistic heavy-ion collisions, but also in more elementary collisions as proton–proton and proton–nucleus collisions, became recently a focus of interest. In particular, the fact that these objects are all loosely bound compared to the temperature and energies, e.g. the kinetic energies involved, is often stressed out to be special for their production. The binding energies of these (anti-)nuclei is between 130 keV (Λ separation energy in the hypertriton) and about 8 MeV per nucleon. Whereas the connected temperatures are of the order of 100 to 160 MeV. This lead to some difficulties in the interpretation of the usually discussed production models, i.e. coalescence and statistical-thermal models, as will be discussed here. In this brief review we discuss selected highlights of the production of light (anti-)nuclei, such as (anti-)deuteron, (anti-)helium and (anti-)alpha nuclei. In addition, we will discuss the current status of the highly debated lifetime of the (anti-)hypertriton and connected measurements and model results.
We investigate hadronic particle spectra and flow characteristics of heavy-ion reactions in the FAIR/NICA energy range of 1 AGeV ≤ Elab ≤ 10 AGeV within a relativistic ideal hydrodynamic one-fluid approach. The particlization is realized by sampling the Cooper-Frye distribution for a grand canonical hadron gas on a hypersurface of constant energy density. Results of the hydrodynamic calculations for different underlying equations of state are presented and compared with experimental data and microscopic transport simulations. The sensitivity of the approach to physical model inputs concerning the initial state and the particlization is studied.
Terahertz (THz) radiation lies between the micro and far-infrared range in the electromagnetic spectrum. Compared with microwave and millimeter waves, it has a larger signal bandwidth and extremely narrow antenna beam. Thus, it is easier to achieve high-resolution for imaging and detection applications. The unique properties, such as penetration for majority non-polar materials, non-ionizing characteristic and the spectral fingerprint of materials, makes THz imaging an appealing artifice in the military, biomedical, astronomical communications, and other areas. However, THz radiation’s current low power level and detection sensitivity block THz imaging system from including fewer optical elements than the visible or infrared range. This leads to imaging resolution, contrast, and imaging field of view degenerate and makes the aberration more serious. THz imaging based on the space Fourier spectrum detection is developed in this thesis to achieve high-quality imaging. The main concept of Fourier imaging is by recording the field distribution in the Fourier plane (focal plane) of the imaging system; the information of the target is obtained. The numerical processing method is needed to extract the amplitude and phase information of the imaged target. With additional process, three-dimensional (3D) information can be obtained based on the phase information. The novel recording and reconstructing ways of the Fourier imaging system enables it to have a higher resolution, better contrast, and broader field of view than conventional imaging systems such as microscopy and plane to plane telescopic imaging system.
The work presented in this thesis consists of two imaging systems, one is working at 300 GHz based on the fundamental heterodyne detection of the THz radiation, the other is operated at 600 GHz by utilizing the sub harmonic heterodyne detection technique. The realization and test of the heterodyne detection are based on the THz antenna-coupled field-effect transistor (TeraFET) detector developed by Dr. Alvydas Lisauskas. Both systems use two synchronized electronic multiplier chains to radiate the THz waves. One radiation works as the local oscillator (LO), the other works as illumination with a slight frequency shift, the radiations are mixed on the detector scanning in the Fourier plane to record the complex Fourier spectrum of the imaged target. The LO has the same frequency range as the illuminating radiation for fundamental heterodyne detection but half the frequency range for the sub-harmonic heterodyne detection. The 2-mm resolution, 60-dB contrast, and 5.5-cm diameter imaging area at 300 GHz and the of 500-μm resolution, 40-dB contrast, and 3.5-cm diameter imaging area at 600 GHz are achieved (the 300-GHz illuminating radiation has the approximate power of 600 μW , the 600-GHz illuminating radiation has the approximate power of 60 μW ).
The thesis consists of 6 parts. After the introduction, the second chapter expands on the topic of Fourier optics from a theoretical point of view and the simulations of the Fourier imaging system. First, the theory of the electromagnetic field propagation in free space and through an optical system are investigated to elicit the Fourier transform function of the imaging system. The simulation is used for theoretical considerations and the implementation of a Fourier optic script that allows for numerical investigations on reconstruction. The preliminary imaging field of view and resolution are also demonstrated. The third chapter describes the Fourier imaging system at 300 GHz based on the fundamental heterodyne detection, including the experimental setup, the 2D, and 3D imaging results. The following fourth chapter reports the integration of the TeraFET detector with two substrate lenses (one is a Si lens on the back-side Si substrate, the other is a wax/PTFE lens on the front side containing the bonding wires) for sub-harmonic heterodyne detection at 600 GHz. The characteristic of the wax/PTFE lens at THz range is presented. After that, the compared imaging results between the detector with and without the wax/PTFE lens are shown. The fifth chapter extends the demonstration on the lateral and depth resolution of the Fourier imaging system in detail and uses the experimental results at 600 GHz to validate the analytical predictions. The comparison of the resolution between the Fourier imaging system and the conventional microscopy system proves that the Fourier imaging system has better imaging quality under the same system configuration. The last chapter in this thesis concludes on the findings of the THz Fourier imaging and gives an outlook for the enhancement of the Fourier imaging system at THz range.
Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results.
Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies.
Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest.
Methods: The γ-ray spectra from neutron-capture reactions on the 234U, 236 U, and 238 U nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV.
Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths.
Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
We present the first experimental search for the rare charm decay D0→π0ν¯ν. It is based on an e+e− collision sample consisting of 10.6×10^6 pairs of D0¯D0 mesons collected by the BESIII detector at √s=3.773 GeV, corresponding to an integrated luminosity of 2.93 fb^−1. A data-driven method is used to ensure the reliability of the background modeling. No significant D0→π0ν¯ν signal is observed in data and an upper limit of the branching fraction is set to be 2.1×10^-4 at the 90% confidence level. This is the first experimental constraint on charmed-hadron decays into dineutrino final states.
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
Polarization of Λ and ¯Λ hyperons along the beam direction in Pb-Pb collisions at √sNN=5.02 TeV
(2022)
The polarization of the Λ and ¯Λ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at √sNN=5.02 TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to Pz comes from elliptic flow-induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟨Pzsin(2φ−2Ψ2)⟩, where φ is thhyperon azimuthal emission angle and Ψ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities and in the 30%–50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at √sNN=200 GeV, with somewhat smaller amplitude in the semicentral collisions. This is the first experimental evidence of a nonzero hyperon Pz in Pb-Pb collisions at the LHC. The comparison of the measured Pz,s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear-induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase.