560 Paläontologie; Paläozoologie
Refine
Year of publication
Document Type
- Article (153)
- Doctoral Thesis (8)
- Book (5)
- Part of a Book (3)
- Contribution to a Periodical (3)
- Part of Periodical (3)
- Review (2)
- Conference Proceeding (1)
Has Fulltext
- yes (178)
Is part of the Bibliography
- no (178)
Keywords
- Piesberg (5)
- fossil insects (3)
- Anthraconaia (2)
- Belize (2)
- Cretaceous (2)
- Gastropoda (2)
- Germany (2)
- Laerheide (2)
- Megasecoptera (2)
- Upper Carboniferous (Westphalian D) (2)
Institute
The present corrigendum corrects errors that occurred in: Zheng Y., Hu H., Chen D., Chen J., Zhang H. & Rasnitsyn A.P. 2021. New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China. European Journal of Taxonomy 733: 146–159. https://doi.org/10.5852/ejt.2021.733.1229
Die reichen Fossilienlagerstätten im Norden Malawis haben Spuren des ältesten Menschen preisgegeben – nach fast zehn Jahren der Suche. Die Geschichte des aufsehenerregenden Funds, welche Rolle Schweinezähne dabei gespielt haben,und wie es zu einem Museum in der Malawischen Provinz kam, berichten die Paläontologen Friedemann Schrenk und Ottmar Kullmer.
A massive occurrence of microbial carbonates, including abundant sponge remains, within the Devonian Elbingerode Reef Complex was likely deposited in a former cavity of the fore-reef slope during the early Frasnian. It is suggested that the formation of microbial carbonate was to a large part favored by the activity of heterotrophic, i.e., sulfate-reducing bacteria, in analogy to Quaternary coral reef microbialites. The Elbingerode Reef Complex is an example of an oceanic or Darwinian barrier reef system. In modern barrier reef settings, microbialite formation is commonly further facilitated by weathering products from the central volcanic islands. The Devonian microbialites of the Elbingerode Reef Complex occur in the form of reticulate and laminated frameworks. Reticulate framework is rich in hexactinellid glass sponges, the tissue decay of which led to the formation of abundant micrite as well as peloidal and stromatactis textures. Supposed calcimicrobes such as Angusticellularia (formerly Angulocellularia) and Frutexites, also known from cryptic habitats, were part of the microbial association. The microbial degradation of sponge tissue likely also contributed to the laminated framework accretion as evidenced by the occurrence of remains of so-called “keratose” demosponges. Further typical textures in the microbialite of the Elbingerode Reef Complex include zebra limestone, i.e., the more or less regular intercalation of microbial carbonate and cement. Elevated concentrations of magnesium in the microbialite as compared to the surrounding metazoan (stromatoporoid-coral) reef limestone suggests that the microbialite of the Elbingerode Reef Complex was initially rich in high-magnesium calcite, which would be yet another parallel to modern, cryptic coral reef microbial carbonates. Deposition and accretion of the microbialite largely occurred in oxygenated seawater with suboxic episodes as indicated by the trace element (REE + Y) data.
One of the most important events in human history occurred during the Early Pleistocene: the dispersal of early hominins out of Africa and into Europe and Asia. In Western Europe, the earliest evidences of the genus Homo have been found in the Baza Basin, at the sites of Orce in the SE of the Iberian Peninsula. These sites contain fossils and lithic industry dated approximately as 1.4–1.3 Ma.While hominin remains and artifacts at Orce, as well as the accompanying fauna, have been extensively studied, the properties and evolution of the Early Pleistocene vegetation in the basin remain unknown. The general effect of climate change on the expansion of early hominins from Africa into Eurasia still remains unclear. It is not known if the Early Pleistocene climate changes and the development of glacials periods led to the extirpation of European communities, or if those communities were able to endure and persist through such adverse climatic periods. This open question highlights the need for climate and environmental analyses for the time before, during and after the first presence of Homo in Europe. This PhD thesis contributes to that need by the presentation of the first long pollen record of the Baza Basin, where the oldest hominin sites in Western Europe are found.
Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.
Biominerals fossilisation: fish bone diagenesis in plio–pleistocene african hominid sites of Malawi
(2020)
Fish fossilisation is relatively poorly known, and skeletal element modifications resulting from predation, burial and diagenesis need to be better investigated. In this article, we aim to provide new results about surface, structural and chemical changes in modern and fossil fish bone. Fossil samples come from two distinct localities of roughly the same age in the Pliocene–Pleistocene Chiwondo Beds adjacent to Lake Malawi. Optical and scanning electron microscope (SEM) observations, energy dispersive spectroscopy (EDS) analyses and Fourier transform infrared (FTIR) spectrometry were carried out on three categories of fish bones: (i) fresh modern samples collected in the lake, (ii) extracted from modern fish eagle regurgitation pellets, and (iii) fossils from Malema and Mwenirondo localities. A comparison of these data allowed us to detect various modifications of bone surfaces and structure as well as composition changes. Some differences are observed between fresh bones and modern pellets, and between pellets and fossils. Moreover, fossil fish bone surface modifications, crystallinity, and chemical composition from Malema and Mwenirondo differ despite their chronological and spatial proximities (2.5–2.4 Ma, 500 m). In both sites, the post-predation modifications are strong and may hide alterations due to the predation by bird of prey such as the fish eagle. The combination of the used methods is relevant to analyses of diagenetic alterations in fish bones.
Das Cranium eines fossilen Hominiden des Formenkreises Homo sapiens sapiens wurde relativ-geologisch sowie absolut durch Radiokohlenstoff und Aminosäuren auf ungefähr 31 000 Jahre B.P. datiert. Andere absolute sowie relative Daten an Mollusken und Mammutzähnen in überlagernden jüngeren Straten datieren auf 18 000 — 21000 und 16 000 Jahren B.P. Geomorphologische und geophysikalische Datierungen stimmen somit gut überein. Er ist der älteste datierte und früheste Bewohner Zentraleuropas, der dem Homo sapiens sapiens angehört.
Our knowledge of early evolution of snakes is improving, but all that we can infer about the evolution of modern clades of snakes such as boas (Booidea) is still based on isolated bones. Here, we resolve the phylogenetic relationships of Eoconstrictor fischeri comb. nov. and other booids from the early-middle Eocene of Messel (Germany), the best-known fossil snake assemblage yet discovered. Our combined analyses demonstrate an affinity of Eoconstrictor with Neotropical boas, thus entailing a South America-to-Europe dispersal event. Other booid species from Messel are related to different New World clades, reinforcing the cosmopolitan nature of the Messel booid fauna. Our analyses indicate that Eoconstrictor was a terrestrial, medium- to large-bodied snake that bore labial pit organs in the upper jaw, the earliest evidence that the visual system in snakes incorporated the infrared spectrum. Evaluation of the known palaeobiology of Eoconstrictor provides no evidence that pit organs played a role in the predator–prey relations of this stem boid. At the same time, the morphological diversity of Messel booids reflects the occupation of several terrestrial macrohabitats, and even in the earliest booid community the relation between pit organs and body size is similar to that seen in booids today.