20E42 Groups with a BN-pair; buildings [See also 51E24]
Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Arithmetische Gruppe (1)
- Bruhat-Tits-Gebäude (1)
- CAT(0)-Räume (1)
- CAT(0)-spaces (1)
- Halbeinfache algebraische Gruppe (1)
- Invariante (1)
- S-arithmetic groups (1)
- Sigma-Invariante (1)
- Sigma-invariant (1)
- Symmetrischer Raum (1)
Institute
- Mathematik (1)
Im Zentrum dieser Arbeit steht die Operation der Gruppe Gamma:=SL_n(Z[1/m]) auf dem symmetrischen Raum M:=SL_n(R)/SO(n). Allgemeiner betrachten wir die Operation rho:Gamma->Isom(M) einer S-arithmetischen algebraischen Gruppe durch Isometrien auf dem zugehörigen symmetrischen Raum M. Die symmetrischen Räume sind Riemannsche Mannigfaltigkeiten mit nichtpositiver Krümmung und daher insbesondere CAT(0)-Räume. R. Bieri und R. Geoghegan haben für die Operation rho:G->Isom(M) einer abstrakten Gruppe G auf einem CAT(0)-Raum M die geometrischen Invarianten Sigma^k(rho) als Teilmenge des Randes von M eingeführt (vgl. [Robert Bieri and Ross Geoghegan, Connectivity properties of group actions on non-positively curved spaces, vol. 161, Memoirs of the AMS, no. 765, American Mathematical Society, 2003]). Die Fokusierung, die durch die geometrischen Invarianten erreicht wird, hat sich in vielen Fällen bewährt, in denen eine Operation durch Translationen auf dem euklidischen Raum zur Verfügung steht. Über die Invarianten von anderen CAT(0)-Operationen ist noch wenig bekannt. In der vorliegenden Arbeit berechnen wir nun die geometrischen Invarianten Sigma^k(rho) für die oben erwähnte Operation rho der S-arithmetischen Gruppe Gamma auf dem zugehörigen symmetrischen Raum M. Wir erhalten für die Gruppe SL_n(Z[1/m]) die folgende Invariante: Sigma^k(rho) ist der ganze Rand von M, falls k kleiner als s(n-1) ist; Sigma^k(rho) ist die Menge aller Randpunkte e von M, die nicht im Rand eines rational definierten flachen Unterraum von M liegen, falls k größer oder gleich s(n-1) ist. Hierbei ist s die Anzahl der verschiedenen Primteiler von m. Die obigen Resultate sind eine Verallgemeinerung derer in [Robert Bieri and Ross Geoghegan, Controlled Connectivity of SL_2(Z[1/m]), Geometriae Dedicata 99 (2003), 137--166]. Der Beweis, den wir geben, besteht aus einer Vereinfachung des Beweises von Bieri und Geoghegan, die dann auf die allgemeinere Situation angepasst werden konnte. Ein interessanter Aspekt ergibt sich, wenn wir für eine Operation rho auf M die Zahlen k betrachten, für die gilt: (*) Sigma^k(rho) ist der ganze Rand von M. Operiert die Gruppe Gamma mit diskreten Bahnen, dann ist (*) äquivalent zur Eigenschaft, daß die Punktstabilisatoren Gamma_a, für a aus M, vom Typ F_k sind. Die Eigenschaft (*) ist auch von Interesse für S-arithmetische Untergruppen einer linearen algebraischen Gruppe über einem Funktionenkörper. Wir zeigen, daß es hier eine naheliegende Operation rho' auf einem Bruhat-Tits Gebäude M' gibt, so daß Gamma' ein Punktstabilisator und damit die Eigenschaft (*) mit der Eigenschaft "Gamma' ist vom Typ F_k" zusammenfällt. Im Zahlkörperfall sind die Verhältnisse ganz anders. Unsere S-arithmetischen Gruppen operieren auf dem symmetrischen Raum M nicht mit diskreten Bahnen und sind durchwegs vom Typ F_k für alle k. Dagegen erlaubt unser Hauptresultat die Bestimmung der Zahlen k mit der Eigenschaft (*) und zeigt eine interessante Abhängigkeit von s=|S| und dem Rang r der algebraischen Gruppen (rho erfüllt (*) <=> k<rs). Das Hauptresultat wird außerdem nicht nur für SL_n(Q), sondern allgemeiner für Chevalley-Guppen über Q oder Q(i) gezeigt, so daß wir damit für eine Reihe von klassischen CAT(0)-Operationen die Invarianten Sigma^k(rho) bestimmt haben.