## Frankfurter Informatik-Berichte

### Refine

#### Year of publication

#### Document Type

- Working Paper (13)

#### Language

- English (13)

#### Has Fulltext

- yes (13)

#### Is part of the Bibliography

- no (13)

#### Keywords

- Algorithmus (1)
- Alpha equivalence (1)
- Beschreibungskomplexität (1)
- Flash Memories (1)
- Iteratives Array (1)
- Online Algorithms (1)
- Paging Algorithms (1)
- Programmiersprachen (1)
- Reduktionssystem (1)
- Rènyi mutual information (1)

#### Institute

- Informatik (13)

[2017, 2]

Motivated by tools for automaed deduction on functional programming languages and programs, we propose a formalism to symbolically represent $\alpha$-renamings for meta-expressions. The formalism is an extension of usual higher-order meta-syntax which allows to $\alpha$-rename all valid ground instances of a meta-expression to fulfill the distinct variable convention. The renaming mechanism may be helpful for several reasoning tasks in deduction systems. We present our approach for a meta-language which uses higher-order abstract syntax and a meta-notation for recursive let-bindings, contexts, and environments. It is used in the LRSX Tool -- a tool to reason on the correctness of program transformations in higher-order program calculi with respect to their operational semantics. Besides introducing a formalism to represent symbolic $\alpha$-renamings, we present and analyze algorithms for simplification of $\alpha$-renamings, matching, rewriting, and checking $\alpha$-equivalence of symbolically $\alpha$-renamed meta-expressions.

[2017, 1]

We introduce rewriting of meta-expressions which stem from a meta-language that uses higher-order abstract syntax augmented by meta-notation for recursive let, contexts, sets of bindings, and chain variables. Additionally, three kinds of constraints can be added to meta-expressions to express usual constraints on evaluation rules and program transformations. Rewriting of meta-expressions is required for automated reasoning on programs and their properties. A concrete application is a procedure to automatically prove correctness of program transformations in higher-order program calculi which may permit recursive let-bindings as they occur in functional programming languages. Rewriting on meta-expressions can be performed by solving the so-called letrec matching problem which we introduce. We provide a matching algorithm to solve it. We show that the letrec matching problem is NP-complete, that our matching algorithm is sound and complete, and that it runs in non-deterministic polynomial time.

09, 1

The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the Rènyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features.

09,2

We propose a variation of online paging in two-level memory systems where pages in the fast cache get modified and therefore have to be explicitly written back to the slow memory upon evictions. For increased performance, up to alpha arbitrary pages can be moved from the cache to the slow memory within a single joint eviction, whereas fetching pages from the slow memory is still performed on a one-by-one basis. The main objective in this new alpha-paging scenario is to bound the number of evictions. After providing experimental evidence that alpha-paging can adequately model flash-memory devices in the context of translation layers we turn to the theoretical connections between alpha-paging and standard paging. We give lower bounds for deterministic and randomized alpha-paging algorithms. For deterministic algorithms, we show that an adaptation of LRU is strongly competitive, while for the randomized case we show that by adapting the classical Mark algorithm we get an algorithm with a competitive ratio larger than the lower bound by a multiplicative factor of approximately 1.7.

08, 1

We study the effect of randomness in the adversarial queueing model. All proofs of instability for deterministic queueing strategies exploit a finespun strategy of insertions by an adversary. If the local queueing decisions in the network are subject to randomness, it is far from obvious, that an adversary can still trick the network into instability. We show that uniform queueing is unstable even against an oblivious adversary. Consequently, randomizing the queueing decisions made to operate a network is not in itself a suitable fix for poor network performances due to packet pileups.

07, 1

Iterative arrays (IAs) are a, parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this note, realtime-lAs with sublinear space bounds are used to accept formal languages. The existence of a proper hierarchy of space complexity classes between logarithmic anel linear space bounds is proved. Furthermore, an optimal spacc lower bound for non-regular language recognition is shown. Key words: Iterative arrays, cellular automata, space bounded computations, decidability questions, formal languages, theory of computation

05, 3

FIFO is the most prominent queueing strategy due to its simplicity and the fact that it only works with local information. Its analysis within the adversarial queueing theory however has shown, that there are networks that are not stable under the FIFO protocol, even at arbitrarily low rate. On the other hand there are networks that are universally stable, i.e., they are stable under every greedy protocol at any rate r < 1. The question as to which networks are stable under the FIFO protocol arises naturally. We offer the first polynomial time algorithm for deciding FIFO stability and simple-path FIFO stability of a directed network, answering an open question posed in [1, 4]. It turns out, that there are networks, that are FIFO stable but not universally stable, hence FIFO is not a worst case protocol in this sense. Our characterization of FIFO stability is constructive and disproves an open characterization in [4].

04, 2

It is shown that between one-turn pushdown automata (1-turn PDAs) and deterministic finite automata (DFAs) there will be savings concerning the size of description not bounded by any recursive function, so-called non-recursive tradeoffs. Considering the number of turns of the stack height as a consumable resource of PDAs, we can show the existence of non-recursive trade-offs between PDAs performing k+ 1 turns and k turns for k >= 1. Furthermore, non-recursive trade-offs are shown between arbitrary PDAs and PDAs which perform only a finite number of turns. Finally, several decidability questions are shown to be undecidable and not semidecidable.

03, 1

We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA.

03, 2

The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k.