Refine
Year of publication
Document Type
- Doctoral Thesis (440) (remove)
Language
- German (440) (remove)
Has Fulltext
- yes (440)
Is part of the Bibliography
- no (440)
Keywords
- Paracoccus denitrificans (7)
- RNS (7)
- Cytochromoxidase (6)
- NMR-Spektroskopie (6)
- Gentherapie (4)
- HIV (4)
- Organische Synthese (4)
- RNA (4)
- Ubihydrochinon-Cytochrom-c-Reductase (4)
- Antisense-Oligonucleotide (3)
Institute
- Biochemie und Chemie (440) (remove)
Das wachsende Verständnis für das fein abgestimmte Zusammenspiel aus Struktur und Funktion von Nukleinsäuren resultiert aus unzähligen Forschungsprojekten. Forschende stehen dabei vor der Herausforderung, dass die zu untersuchenden Oligonukleotide sowohl modifiziert als auch in ausreichender Menge und Reinheit dargestellt werden müssen. Die chemische Festphasensynthese ist ein bewährtes Mittel zur Synthese hochmodifizierter DNA und RNA. Allerdings werden Oligonukleotide mit zunehmender Länge unzugänglicher, da die einzelnen Kupplungsreaktionen nicht quantitativ ablaufen, was zu schwer abtrennbaren Abbruchsequenzen führt. Hinzu kommt, dass während der chemischen Synthese harsche Reaktionsbedingungen nötig sind, denen die gewünschten Modifikationen standhalten müssen. (Chemo-) enzymatische Methoden können diese Hürden überwinden und somit den Zugang zu biologisch interessanten, längeren modifizierten Sequenzen ermöglichen. Jedoch erfolgt der enzymatische Einbau von Modifikationen ohne aufwendige Optimierung lediglich statistisch verteilt. Um weitere Erfolge im Bereich der Strukturaufklärung zu erzielen, werden somit Synthesemethoden benötigt, die sich zum positionsspezifischen Einbau von Modifikationen eignen und gleichzeitig den Zugang zu längeren Oligonukleotiden ermöglichen. Zur Untersuchung der Zusammenhänge zwischen Struktur und Funktion haben sich in den letzten Jahren lichtadressierbare Verbindungen als gefragte Modifikationen erwiesen. Der Einsatz von Licht als mildes, nicht-invasives Auslösesignal stellt besonders im biologischen Kontext eine interessante Herangehensweise dar. Um hochwertige Aussagen über das Verhalten von Oligonukleotiden in komplexer biologischer Umgebung machen zu können, muss durch die gezielte Platzierung lichtaktivierbarer Verbindungen ein effizientes AN/AUS-Verhältnis geschaffen werden. Der Einbau photolabiler Schutzgruppen erlaubt eine vorübergehende Beeinflussung der Oligonukleotidstruktur, die durch Abspaltung der Schutzgruppe irreversibel (re-) aktiviert werden kann. Im Gegensatz dazu ermöglicht der Einbau von Photoschaltern eine reversible Adressierbarkeit durch Isomerisierungsprozesse. Die Synthese komplexer gezielt-markierter Oligonukleotide erfolgt zumeist chemisch und ist daher längenlimitiert.
Ziel dieser Doktorarbeit war es, beide Fragestellungen zu vereinen und eine chemo-enzymatische Methode zur RNA-Synthese zu untersuchen, die zum einen die positionsspezifische Modifizierung mit lichtaktivierbaren Einheiten erlaubt und darüber hinaus die Längenlimitierung der chemischen Festphasensynthese überkommt. Im Zentrum der Methode stehen drei enzymatische Reaktionsschritte zum Einbau von photolabil- und photoschaltbar-modifizierten Nukleosid-3‘,5‘-Bisphosphaten: I) eine 3‘-Verlängerung, in der die modifizierten Bisphosphate mit T4 RNA Ligase 1 mit dem 3‘-Ende einer RNA verknüpft werden; II) die Dephosphorylierung des 3‘-Phosphats mit Shrimp Alkaline Phophatase und III) die Verknüpfung der 3‘-terminal modifizierten RNA mit einem zweiten 5‘-phosphorylierten RNA-Fragment, wodurch eine Gesamtsequenz mit gezielt platzierter Modifikation entsteht (Abb. I).
Im ersten Teilprojekt wurden in kollaborativer Arbeit zunächst benötigte photolabile NPE- und photoschaltbare Azobenzol-C-Nukleosid-3‘,5‘-Bisphosphate synthetisiert und grundlegende Bedingungen der enzymatischen Reaktionen erarbeitet. Hierbei konnte der enzymatische Syntheseansatz erfolgreich in Lösung umgesetzt und der chemo-enzymatische Einbau aller synthetisierten Bausteine nachgewiesen werden. Aufbauend auf diesen Erkenntnissen wurde die Methode in eigenständigen Arbeiten weiterverfolgt, um den multiplen Einbau NPE-modifizierter Nukleosid-3‘,5‘-Bisphosphate in direkter Nachbarschaft sowie deren Einbau in DNA/RNA-Mixmere mit Phosphodiester- oder Phosphorthioatrückgrat zu untersuchen. Es konnte gezeigt werden, dass die verwendeten Enzyme neben lichtaktivierbaren Modifikationen zusätzliche Anpassungen der Phosphateinheit sowie unterschiedliche Ribosebausteine in Kombination tolerieren. Da exogene RNA schnell von Exonukleasen abgebaut und somit unwirksam wird, werden zahlreiche stabilisierende Anpassungen an synthetischen RNAs vorgenommen. Zu den häufigsten zählen Phosphorthioate und Modifikationen der Ribose. Mit der erfolgreichen Modifikation der chimären Oligonukleotide eröffnet die erarbeitete Methode einen wichtigen Zugang zu therapeutisch interessanten Oligonukleotiden. Ein weiterer wichtiger Schritt in Richtung biologisch relevanter Anwendungsmöglichkeiten konnte mit der Synthese, Charakterisierung und Umsetzung eines DEACM-geschützten Uridin-3‘,5‘-Bisphosphates (pUDEACMp) errungen werden. Im Vergleich zur verwendeten NPE-Schutzgruppe ist das Absorptionsspektrum der DEACM-Schutzgruppe bathochrom-verschoben, was eine Abspaltung mit Wellenlängen > 400 nm erlaubt. Dadurch können Zellschäden vermieden und Oligonukleotide mit NPE- und DEACM-Modifikation wellenlängenselektiv angesprochen werden...
Die Verwendung von photolabilen Schutzgruppen zur nicht-invasiven Kontrolle von Systemen birgt ein großes Potential für verschiedenste Anwendungsgebiete, die von der Erforschung und Regulation biologischer Prozesse, über den Einsatz in medizinischer Therapie bis hin zur Verwendung als molekulare Datenspeicher reichen. Für diese Umsetzung benötigt es allerdings eine breite Auswahl an entsprechenden PPGs und das Wissen über ihre Reaktionsmechanismen. Im Allgemeinen lässt sich die Konzeptionierung von PPGs in drei Prozesse einteilen, beginnend bei dem Design und der Synthese einer neuen PPG. Bei diesem Schritt liegt der Fokus auf ein oder zwei besonderen Eigenschaften, wie beispielsweise einer Absorptionswellenlänge in einem bestimmten Spektralbereich oder einer hohen Uncaging-Quantenausbeute. Im zweiten Schritt folgt die Untersuchung der PPG bezüglich spektroskopischer und mechanistischer Eigenschaften und ggf. anschließender Optimierung auf synthetischer Ebene. Die so gewonnenen Informationen sind dann hilfreich bei dem letzten Schritt, bei dem es um den Einsatz der PPG in einem entsprechenden System geht. Hierbei müssen die verwendeten PPGs genau auf das Zielsystem abgestimmt sein, dazu zählen verschiedenste Parameter wie Anregungswellenlänge, Extinktionskoeffizient, Art und Struktur der Photoprodukte sowie Uncaging-Effizienz und Geschwindigkeit.
In der vorliegenden Arbeit wurde über die drei vorgestellten Projekte mittels spektroskopischer Methoden zu allen drei genannten Stadien zur Konzeptionierung von PPGs ein Beitrag geleistet. Dazu zählt die Entwicklung der CBT-basierten PPGs, die Untersuchung der Struktur-Wirkungsbeziehung von (DMA)(2)F-PPGs und die Etablierung einer wellenlängenselektiven An-/Aus-Funktionalität eines Antibiotikums. In enger interdisziplinärer Zusammenarbeit zwischen theoretischen, synthetischen und biologischen Teilgebieten konnte jedes Projekt innerhalb der jeweiligen Entwicklungsstufe erfolgreich abgeschlossen werden.
Mithilfe des relativ neuen Ansatzes, bei dem durch quantenmechanische Berechnungen der vertikalen Anregungsenergie von der kationischen Spezies einer PPG-Grundstruktur eine Aussage über ihre Qualität postuliert werden kann, konnte ausgehend von der Fluoren-Grundstruktur eine neue Klasse von PPGs gefunden werden. Dabei erwies sich die CBT-Struktur mit den Schwefelatomen an der para-Position als besonders geeignet. Insbesondere konnte die Grundstruktur durch die (OMePh)2-Substitution, welche in einer signifikanten bathochromen Verschiebung des Absorptionsmaximums resultierte, optimiert werden. Die Untersuchung der Ultrakurzzeit-Dynamik beider p-CBT Strukturen gab Aufschluss über die unterschiedlichen photochemischen Eigenschaften als PPG.
Für die Stoffklasse der Dimethylamino-Fluorene wurde ein wichtiger Unterschied zwischen den einfach- und zweifach-substituierten Derivaten aufgedeckt, der entscheidend für einen signifikanten Uncaging-Effizienzunterschied ist. Dabei stellt sich die Stabilität des symmetrisch-substituierten Fluorenyl-Kations als der wichtigste Faktor bezüglich der Uncaging-Quantenausbeuten heraus. Beide Schutzgruppen sind in der Lage photoinduziert eine AG freizusetzen, wobei der Reaktionsmechanismus über die kationische Spezies (DMA)(2)F + abläuft. Der Unterschied hierbei liegt in der Lebensdauer der beiden Kationen, die im Falle der symmetrischen PPG stark lösungsmittelabhängig ist und bis zu mehreren Stunden betragen kann, was bis dato das langlebigste Kation dieser Molekülklasse darstellt. Für die zukünftige Optimierung dieser PPG-Klasse ist die Erkenntnis über die Gründe für die Stabilität des Kations von großem Vorteil. Der stabilisierende Faktor ist zum einen die zweite Dimethylamino-Gruppe der symmetrischen Verbindung, welche durch die Erweiterung der Mesomerie zur besseren Verteilung der positiven Ladung im Molekül führt. Zum anderen spielt das Lösungsmittel eine entscheidende Rolle. Dabei bieten protische, polare Medien eine zusätzliche Stabilisierung, die notwendig für die Langlebigkeit des Kations ist. Die Lebensdauer des Kations war zudem durch eine zweite Bestrahlungswellenlänge kontrollierbar. Ausgehend vom Kation konnte eine reversible Nebenreaktion in protischen Lösungsmitteln identifiziert werden, die einen Austausch der AG durch das Lösungsmittel darstellt.
Zusätzlich konnte die kleine Stoffklasse der bisher bekannten Photobasen durch die Verbindung (DMA)2F-OH erweitert werden. Genauer betrachtet handelt es sich dabei um eine photoinduzierte Hydroxidfreisetzung, wodurch je nach eingesetzter Konzentration ein pH-Sprung von bis zu drei Einheiten erreicht werden konnte. Dabei stellt sich die Lebensdauer des pH-Sprungs als ein entscheidender Parameter für Photobasen dar, welcher sich für die hier untersuchte Verbindung aufgrund der besonderen Stabilität des entsprechenden Kations, im Vergleich zu einigen der bereits bekannten Verbindungen, als besonders langlebig herausgestellt hat. Ein weiterer Vorteil des Einsatzes von (DMA)2F-OH als Photobase ist die Möglichkeit den pH-Sprung durch zwei verschiedene Wellenlängen sowohl zeitlich als auch örtlich zu kontrollieren, indem die Verbindung zwischen den zwei Spezies (DMA)2F-OH und (DMA)2F + geschaltet werden kann.
Im Hinblick auf die Anwendungen von PPGs zur verbesserten zeitlichen und örtlichen Kontrolle biologischer Zielsysteme ist im Rahmen dieser Arbeit das Prinzip vom wellenlängenselektiven Uncaging zweier PPGs an einem Molekül (two-PPG-one-molecule, TPOM) etabliert worden. Das Zielmolekül war hier das Antibiotikum Puromycin, welches durch seine Fähigkeit an das Ribosom zu binden, die Proteinbiosynthese inhibieren kann. Dabei wurden zwei verschiedene PPGs gefunden, die sowohl aufeinander als auch auf das Biomolekül selbst abgestimmt sind. Im Ausgangszustand sind beide PPGs am Puromycin angebracht, wodurch es in seiner biologischen Wirkung inaktiv ist. Befindet sich das doppelt geschützte Puromycin in der ROI, so kann es durch die Bestrahlung mit einer bestimmten Wellenlänge infolge des ersten Uncaging-Schritts aktiviert werden. Da biologische Systeme nicht statisch sind, können aktivierte Moleküle stets von der gewünschten ROI nach außen gelangen, wodurch der Anspruch der räumlichen Kontrolle nicht erfüllt wird. In diesem Fall kann durch die TPOM-Umsetzung die zweite Bestrahlungswellenlänge auf den entsprechenden Bereich angewendet werden, wodurch das Uncaging der zweiten PPG initiiert und folglich das Puromycin deaktiviert wird. Des Weiteren konnte gezeigt werden, dass die Deaktivierungswellenlänge auch in der Lage ist beide PPGs zu entfernen, wodurch eine vollständige Inaktivierung des Puromycins außerhalb der ROI garantiert werden kann.
Ist die Proteinbiosynthese längerfristig blockiert, führt das schließlich zum Zelltod. Ein großes Anwendungsgebiet dieses Antibiotikums sind die Neurowissenschaften. Aufgrund der Tatsache, dass Puromycin keine Unterscheidung zwischen eukaryotischen und prokaryotischen Zellen macht, findet es keine Anwendung in der Medizin. Eine zeitliche und örtliche Kontrolle seiner Wirkung könnte den Anwendungsbereich dieses Antibiotikums evtl. ausweiten. Das wohl naheliegendste wäre der Einsatz bei Tumorzellen, deren Behandlung durch Zytostatika auf den gesamten Körper wirken und dadurch viele schwere Nebenwirkungen verursachen.
Wie bereits weiter oben beschrieben muss für jedes Biomolekül und das entsprechende Wirkzentrum die Auswahl des passenden PPG-Paares einzeln abgestimmt werden. Dennoch lässt sich anhand des hier etablierten Systems ein Konzept für die erfolgreiche Umsetzung zukünftiger TPOM-Systeme an anderen biomolekularen Wirkstoffen zusammenfassend formulieren.
* Der erste Schritt sollte die Betrachtung des Wirkzentrums des zu modifizierenden Biomoleküls sein: Welche funktionelle Gruppe bzw. Gruppen sind entscheidend für die Bindetasche oder –stelle? Dieser Bereich des Biomoleküls soll im Zuge des Uncagings entweder blockiert oder abgespalten werden. In der unmittelbaren Nähe muss die PPG1 angebracht werden.
* Bei der Wahl von PPG1 ist das wichtigste Kriterium, dass das Biomolekül mit enthaltener Schutzgruppe in seiner Wirkung unbeeinträchtigt bleibt. Dies schränkt die Auswahl beträchtlich ein. Eine mögliche Umsetzung wäre die Anbringung einer Nitro-Gruppe falls vorhanden an einen Benzolring, welcher sich im Fall eines großen Biomoleküls in der Nähe der wichtigen funktionellen Stelle befindet.
* Die zweite PPG (PPG2), deren photoinduzierte Abspaltung zur Aktivierung des Wirkstoffs führen soll, kann strukturell frei gewählt werden. Das Auswahlkriterium hierbei ist das Absorptionsspektrum. Hierbei sollte das Absorptionsmaximum rotverschoben zur PPG1 sein, um eine unerwünschte Abspaltung zu vermeiden. Außerdem darf keine signifikante Absorption von PPG2 bei der Uncaging-Wellenlänge von PPG1 vorhanden sein.
* Beide PPGs sollten eine ähnliche Uncaging-Quantenausbeute vorweisen, um im Deaktivierungsschritt der doppelt geschützten Verbindung durch das höher energetische Licht keine Bevorzugung einer einzelnen Schutzgruppe zu riskieren.
Anhand der erarbeiteten Herangehensweise können weitere Wirkstoffe oder Biomoleküle hin zu einer An- / Aus-Funktionalität modifiziert werden. Mit der Umsetzung des TPOM-Konzepts kann eine Verbesserung der örtlichen und zeitlichen Kontrolle der Aktivität eines Antibiotikums erreicht werden. Für die Anwendung in biologischer Umgebung ist diese präzische Kontrolle essentiell, um unerwünschte Nebenwirkungen angesundem Gewebe zu verhindern.
Trotz der Verfügbarkeit von siRNA, dem aktuellen Goldstandard zur Generierung von RNAInterferenz-vermitteltem Gen-silencing, stellen unerwünschte Immunantworten des Organismus auf doppelsträngige RNA exogenen Ursprungs noch immer ein fundamentales Problem dar, besonders mit Hinblick auf die Entwicklung Oligonukleotid-basierter Wirkstoffe.
Durch das begrenzte Repertoire an Modifikationen, welches durch die Abhängigkeit von zelleigenen Faktoren unter anderem zur Steigerung der intrazellulären Stabilität und zur
Reduktion unerwünschter Effekte zur Verfügung steht, konnte bis dato nur einer überschaubaren Anzahl entsprechender Oligonukleotide eine offizielle Zulassung für die therapeutische Anwendung in der Medizin erteilt werden.
Hier bergen künstliche Ribonukleasen, welche die Umesterungsreaktion unabhängig von der zellinternen Maschinerie ebenfalls effizient und sequenzspezifisch bewerkstelligen können, großes Potential als eine Alternative. Während Metall-basierte Systeme in der Regel auf
unphysiologisch hohe Konzentrationen zweiwertiger Übergangsmetallionen, wie beispielsweise Lanthanoide oder auch Kupfer, angewiesen sind, könnten metallfreie Katalysatoren dahingehend eine wesentlich flexiblere Option darstellen. Die Optimierung Guanidin-basierter RNA-Spalter für den Einsatz in der Bioanalytik und Medizin stellt seit geraumer Zeit eines der obersten Ziele unseres Arbeitskreises dar. Unter diesen bewährte sich vor allem das Tris(2-aminobenzimidazol), welches in Form von Konjugaten mit Antisense-Oligonukleotiden kurze Modellsubstrate sequenzspezifisch spaltet.
Neben der äußerst mühseligen, vielstufigen Synthese eines konjugierbaren Tris(2-aminobenzimidazol)s waren die untersuchten Systeme mit Halbwertszeiten von
teilweise über 20 Stunden jedoch viel zu langsam, um auch potentiell beobachtbare Veränderung des Phänotyps in vivo induzieren zu können. Ein weiterer begrenzender Faktor
stellte die Konjugationstrategie des Spalters über Aktivester-Chemie und Aminolinker dar, welche eine Kupplungsausbeute von 0 % bis im besten Fall ca. 30 % lieferte. Um eine Methode zu erhalten, welche routinemäßig zur sequenzspezifischen Spaltung einer Vielzahl verschiedener RNA-Substrate genutzt werden kann, war folglich eine praktikablere Synthesestrategie zur Darstellung der Spalterkonjugate einerseits und zudem eine Erhöhung der Katalysatoraktivität andererseits notwendig, um auch kurzlebige Ziel-RNAs wirkungsvoll
ausschalten zu können. In diesem Zusammenhang wurde eine neue Syntheseroute erarbeitet, welche den für die
Konjugation funktionalisierten Spalter über wenige Stufen in Mengen von über 10 g lieferte. Daran anschließend konnte die Synthese eines Phosphoramidits realisiert werden, welches in einer manuellen Kupplungsprozedur die Darstellung von 5‘-Konjugaten des Tris(2-aminobenzimidazol)s in exzellenten Ausbeuten und, im Vergleich zur vorherigen
Methode, wesentlich kürzeren Kupplungszeiten ermöglichte. Die vollständige Kompatibilität des Phosphoramidits mit der automatisierten Festphasensynthese konnte im Rahmen dieser
Arbeit jedoch nicht erreicht werden. Während die manuelle Prozedur Konjugationsausbeuten von über 90 % lieferte, wurden an einem handelsüblichen Oligonukleotid-Synthesizer auch
nach Modifikation der Kupplungsprotokolle und bei erhöhtem Amiditverbrauch lediglich 65 %erzielt. Durch Inkorporation von LNA-Nukleotiden in zwei gegen die PIM1-mRNA gerichtete 15mer
DNA-Konjugate ließ sich eine Reduktion der Halbwertszeit von Cy5-markierten 22mer Modellsubstrate auf unter 4 h erreichen, wobei dieses Resultat auch anhand eines 412mer Modellsubstrats und in Gegenwart hoher Phosphatkonzentrationen reproduziert werden konnte. Darüber hinaus wurde die besondere Rolle des closing base pairs, sowohl bezüglich der Selektivität als auch der Kinetik der Spaltung, offensichtlich. Während stärker hybridisierende GC-Basenpaare generell eine hohe Präzision gewährleisteten, trat im Falle von AT-Basenpaaren fraying auf, d. h. es konnte auch innerhalb des vermeintlichen Duplex Spaltung beobachtet werden. Genauere Studien zur Positionierung von LNA-Nukleotiden ergaben bei unmittelbarer Lokalisation am 5‘-Terminus von AT-closing base pairs zwar einen selektivitätssteigernden Effekt, überraschenderweise konnte in diesem Fall jedoch auch eine Inhibierung der Spaltungskinetik festgestellt werden. Durch Verschiebung in die vorletzte Position konnte die Aktivität des Konjugats ohne Präzisionsverlust jedoch wiederhergestellt werden. Erste Experimente zur intrazellulären Stabilität der Spalterkonjugate ergaben quantitative, stufenweise Zersetzung, sowohl des DNA- als auch der Mixmer-Konjugate nach wenigen Stunden, was die Notwendigkeit weiterer stabilitätssteigernder Modifikationen zur Vorbereitung auf in vivo-Experimente impliziert. Auf der Suche nach neuen Spaltern stellte sich vor allem das 2-Aminoimidazol als einer der aussichtsreichsten Kandidaten für genauere Untersuchungen heraus. Das korrespondierende Tris(2-aminoimidazol) konnte über eine Marckwald-Synthese in wenigen Stufen dargestellt werden. Erste Spaltexperimente ergaben vor allem in niedrigen Konzentrationen (10 μM) eine im Vergleich zum Benzimidazol-Analogon vielfach höhere Aktivität. Obwohl die Synthese eines funktionalisierten Bisimidazol-benzimidazols gelang,
steht dessen Konjugation mit Oligonukleotiden und deren Aktivitätsbestimmung noch aus.
Es ist bekannt, dass die Aktivierung von S1P-Rezeptoren die Expression von profibrotischen Mediatoren, wie dem Bindegewebswachstumsfaktor CTGF, induzieren und deshalb auch eine Rolle bei der Entstehung der Nierenfibrose spielen kann. In diesem Kontext konnte unsere Arbeitsgruppe zeigen, dass die Aktivierung von S1P5 zur TGF-β2-induzierten CTGF-Expression in humanen glomerulären Mesangiumzellen beiträgt (Wünsche et al. 2015). Im Rahmen dieser Doktorarbeit wurde deshalb die Rolle von S1P5 in einem in vivo-Modell zur Nierenfibrose untersucht. Männliche S1P5-/--Mäuse und Wildtypmäuse mit C57BL/6J-Hintergrund wurden mit einer adeninreichen Diät für jeweils 7 und 14 Tage gefüttert, um eine tubulointerstitielle Fibrose hervorzurufen. Die Nieren von unbehandelten Mäusen des jeweiligen Genotyps dienten als Kontrolle. Die Ergebnisse zeigen, dass S1P5-/--Mäuse geringere Kreatininplasmaspiegel und weniger Schäden im Nierengewebe gegenüber Wildtypen zeigten. Darüber hinaus wurde festgestellt, dass die mRNA-Expression von mehreren Fibrosemarkern und proinflammatorischen Zytokinen in den S1P5-/--Mäusen schwächer war als in den Wildtypen. Die Auswertung von histochemischen Färbungen und Western Blots bestätigte diese Beobachtung. Zusammengefasst kann festgehalten werden, dass S1P5 eine wichtige Rolle bei der Entstehung von Adenin-induzierter Entzündung in der Niere und nachfolgender Pathogenese wie Gewebeschäden und Fibrose spielt.
Ceramide sind ein Bestandteil der Lipiddoppelschicht, in allen eukaryotischen Zellen vorhanden und zentrale Moleküle des Sphingolipidstoffwechsels. Die Synthese und der Abbau der Ceramide werden von vielen verschiedenen Enzymen reguliert. Neben ihrer Aufgabe als strukturelle Elemente der Zellmembranen wurde herausgefunden, dass Ceramide auch in verschiedenen Signalwegen involviert sind, die auch bei Nierenerkrankungen eine Rolle spielen. In Bezug auf die Kettenlänge der angehängten Fettsäure können so genannte kurz- und langkettige Ceramide Apoptose induzieren, wohingegen sehr langkettige Ceramide Zellproliferation fördern. In mehreren Studien wurden bereits Konzentrationsänderungen von kettenlängenspezifischen Ceramiden im Plasma und Serum von Patienten gemessen, die zu diesem Zeitpunkt an einer Nierenerkrankung litten. In dieser Arbeit wurde daher untersucht, ob solche Konzentrationsänderungen auch im Nierengewebe von Patienten und Mäusen mit einer Nierenfibrose, dem Kennzeichen nahezu aller chronischen Nierenerkrankungen, zu sehen sind. Zu diesem Zwecke wurden Biopsien der Nierenrinde und des Nierenmarks von fibrotischen Nieren aus Patienten, die an Hydronephrose und/oder Pyelonephritis litten, und von gesunden Gewebeproben untersucht. Letztere wurden durch Nephrektomien zur Behandlung von Nierenkarzinomen gewonnen und dienten als nichtfibrotische Kontrolle. Zum Vergleich mit fibrotischen Nieren aus Mäusen wurden männliche Mäuse der Linie C57BL/6J mit einer adeninreichen Diät für 14 Tage gefüttert. Die Konzentrationen der Sphingolipide wurden mittels Massenspektrometrie gemessen und die Level der fibrotischen Marker wurden mit Hilfe von RT-qPCR und histologischen Färbungen analysiert. Die Ergebnisse zeigen, dass die sehr langkettigen Ceramide Cer d18:1/24:0 und Cer d18:1/24:1 sowohl in fibrotischen Nierenrindenproben der Patienten als auch in fibrotischen Nieren der Mäuse im Vergleich zu den jeweiligen Kontrollproben signifikant geringer konzentriert waren. Diese Effekte korrelieren mit der Hochregulation der Fibrosemarker COL1α1, COL3α1 und αSMA in den fibrotischen Nieren. Es konnte gezeigt werden, dass nur bestimmte Ceramide in fibrotischem Nierengewebe in ihrer Konzentration verändert sind, was interessante Fragen hinsichtlich der Ursache dieser Veränderungen, ihrer funktionellen Aufgabe und zu möglichen Effekten einer Manipulation des Ceramidstoffwechsels mit dem Ziel der Behandlung der Nierenfibrose oder der Entdeckung neuer Biomarker aufwirft. Die hier präsentierten Ergebnisse zeigen zudem die Eignung von in vivo-Mausmodellen als translationalen Ansatz für das Verständnis der Beteiligung von Ceramiden in menschlichen Nierenerkrankungen.
Die in vitro-Untersuchungen zu der Rolle des S1P-Transporters Spns2 haben gezeigt, dass Spns2 die Expression von CTGF nach Stimulation von Mausmesangiumzellen mit TFG-β2 verstärkt. 24 Stunden nach Stimulation war im Zellkulturüberstand von Spns2-/--mMC im Gegensatz zu Spns2+/+-mMC keine Akkumulation des pro-fibrotischen Zytokins CTGF gegenüber der unstimulierten Kontrolle detektierbar. Nach 48 Stunden Stimulation mit TFG-β2 war die Menge an CTGF im Zelllysat als auch im Zellkulturüberstand von Spns2-/--mMC genauso hoch wie in der unstimulierten Kontrolle. Im Zelllysat und im Überstand der Spns2-/--mMC war die Expression von CTGF weiterhin deutlich höher im Vergleich zu den Proben der unstimulierten Zellen. Die basale und TFG-β2-induzierte Genexpression von S1P-synthetisierenden und S1P-degradierenden Enzymen, sowie die Konzentrationen an S1P und Sphingosin in den Zellen unterschieden sich zwischen Spns2-/--mMC und Spns2+/+-mMC nicht.
Identifizierung und Charakterisierung neuer Inhibitoren der C2-ähnlichen Domäne der 5-Lipoxygenase
(2011)
Die 5-Lipoxygenase (5-LO) katalysiert die ersten beiden Schritte der Leukotrien (LT)-Biosynthese (Samuelsson et al., 1987). Das Substrat Arachidonsäure (AA) wird im ersten Schritt zu einem Fettsäurehydroperoxid, der 5(S)-Hydroperoxy-6-trans-8,11,14-cis-Eikosatetraensäure (5-HpETE) oxidiert. Durch Dehydrierung entsteht im zweiten Reaktionsschritt das instabile Epoxid LTA4. Weiter wandeln zwei Synthasen das LTA4 zum einen in LTB4 oder zum anderen in die Cysteinyl-LTs C4, D4 und E4 um (Samuelsson et al., 1987). Die 5-LO wird in Zellen myeloiden Ursprungs exprimiert und kommt vor allem in reifen Leukozyten vor.
LTs spielen eine wichtige Rolle bei der angeborenen Immunantwort und vermitteln vor allem entzündliche und allergische Reaktionen (Funk 2001; Peters-Golden & Henderson, 2007). Asthma bronchiale, kardiovaskuläre Erkrankungen wie Atherosklerose, Osteoporose oder verschiedene Krebsarten werden im Zusammenhang mit der 5-LO untersucht (Werz & Steinhilber, 2006). Die Inhibition der LT-Biosynthese oder die Senkung der LT-Spiegel stellt eine Möglichkeit dar, den entzündungsfördernden Eigenschaften entgegenzuwirken. Inhibitoren der LT-Biosynthese lassen sich in indirekte und direkte 5-LO-Inhibitoren gliedern. Zu den indirekten 5-LO-Inhibitoren zählen FLAP-Antagonisten (Young, 1991; Evans et al., 2008) sowie CysLT1-Rezeptorantagonisten (Darzen, 1998). Von den vier Gruppen der direkten 5-LO-Inhibitoren (redoxaktive, Eisenligand-, nichtredox- sowie diverse Inhibitoren (Pergola & Werz, 2010)) ist bisher nur Zileuton (Carter et al., 1991), ein Eisenligand-Inhibitor, als Wirkstoff zur Behandlung von Asthma bronchiale in den USA zugelassen.
Das Ziel der vorliegenden Arbeit war es, die neuartige Klasse der Imidazo[1,2-a]pyridine hinsichtlich ihrer 5-LO-Inhibition, ihrer Löslichkeit sowie ihrer Effekte auf die Zellviabilität zu evaluieren und zu optimieren. Dabei stand das Verständnis der Rezeptor-Ligand-Wechselwirkung im Fokus. Ausgehend von Substanz A14, der potentesten Substanz eines virtuellen Screenings nach dualen COX/5-LO-Inhibitoren (Hofmann et al., 2008), wurden 78 Substanzen in ionophor-stimulierten intakten polymorphkernigen Leukozyten (PMNL) sowie im zellfreien System, dem Überstand nach 100.000 × g Zentrifugation (S100) von homogenisierten PMNL, bezüglich ihrer inhibitorischen Aktivität untersucht. Die Effekte auf die Zellviabilität nach Inkubation mit den Substanzen für 48 h auf die humane leukämische Monozytenvorläufer Zelllinie U937 wurden mit Hilfe eines WST-Assays, der die mitochondriale Aktivität misst, sowie eines LDH-Assays, zur Bestimmung der Freisetzung von LDH als Folge von Nekrose, evaluiert.
Innerhalb der Struktur-Aktivitäts-Beziehung (SAR) der 78 Derivate konnte kein eindeutiges Substitutionsmuster, das sowohl in intakten PMNL als auch in zellfreiem S100 zu den gleichen Schlüssen führt, festgestellt werden. Ausgehend von Substanz A14 konnte die inhibitorische Aktivität verbessert werden, wobei Substanzen mit nanomolaren IC50-Werten in beiden Assaysystemen resultierten. Die Substanzen lassen sich in drei strukturelle Teile gliedern: Einen oberen Teil am sekundären Amin, ein bizyklisches N-fusioniertes Imidazopyridin (Teil A) sowie einen Teil B am aromatischen Kern. Nur für den oberen Teil ließ sich ein allgemein-gültiges Substitutionsmuster feststellen. Am sekundären Amin führen in intakten PMNL größere Substituenten zu einer Verbesserung der inhibitorischen Aktivität, wobei dies bis zu einer Cyclohexylgruppe gilt und eine Adamantyl-Substitution eine Ausnahme bildet. Allgemein lässt sich feststellen, dass bei einer Cyclohexylgruppe am sekundären Amin und einer Methylgruppe an Position 6 in Teil A, die Substituenten in Teil B stark variieren können, ohne an inhibitorischer Aktivität zu verlieren. Werden innerhalb des oberen Teils oder in Teil A die Substituenten polarer, sind in Teil B weniger Variationen möglich. Es werden insbesondere lipophile Reste toleriert. Beim Versuch, die Löslichkeit zu verbessern, zeigte sich, dass ein Gleichgewicht zwischen polaren und unpolaren Substituenten vorliegen muss. Auch die Einflüsse der Substituenten auf die Zellviabilität konnten nicht einem allgemein-gültigen Muster unterworfen werden. Mit Substanz 15 konnte ein Derivat identifiziert werden, das verglichen mit der Ausgangssubstanz A14 eine verbesserte inhibitorische Aktivität aufweist (IC50-Werte von 0,16 µM (PMNL) und 0,1 µM (S100)), löslicher ist (clogP-Wert von 4,6) und keine Nekrose auslöst. Weiter zeigten auch die Substanzen 31 und 50 eine Verbesserung der inhibitorischen Aktivität (IC50-Werte von 0,26 µM bzw. 0,58 µM (PMNL) und 0,8 µM bzw. 0,16 µM (S100)) ohne Nekrose auszulösen, wobei Substanz 50 zusätzlich eine verringerte Lipophilie (clogP-Wert von 4,2) aufweist. Substanz 76 ist mit einem IC50-Wert von 6 nM die im zellfreien System aktivste Substanz unter den 78 getesteten Derivaten.
Ein vielversprechender Vertreter dieser neuartigen Klasse der Imidazo[1,2-a]pyridine, Substanz 15 (EP6), wurde in verschiedenen Assaysystemen charakterisiert. EP6 ist ein hochwirksamer Inhibitor der 5-LO mit einem IC50-Wert von 0,16 µM in intakten PMNL und weist im zellfreien S100 von PMNL einen IC50-Wert von 0,1 µM, am partiell gereinigten Enzym einen IC50-Wert von 0,05 µM auf. Die vergleichbare inhibitorische Aktivität in intakten Zellen sowie im zellfreien System lässt auf eine direkte Inhibition der 5-LO schließen. Die Zugabe der allosterischen Faktoren ATP oder Calcium hat keinen Einfluss auf die Potenz von EP6. Auch ist die Inhibition nicht vom Redoxzustand der Zelle abhängig, wie im Falle bekannter nichtredox-Inhibitoren (Werz et al., 1998). Die Zugabe von steigenden Mengen an exogenem Substrat AA zu S100 von PMNL führt zu keiner Beeinträchtigung der Potenz von EP6, was im Vergleich zu den nichtredox-Inhibitoren einen Vorteil bei entzündlichen Prozessen mit erhöhten Lipidhydroperoxid-Spiegeln darstellt. Bei ionophor-stimulierten PMNL ohne die Zugabe von exogenem Substrat resultiert ein sechsfach höherer IC50-Wert von 1,2 µM, der auf eine allosterische Inhibition durch EP6 hinweist, bei der Substrat in ausreichenden Mengen vorliegen muss, damit EP6 mit dem 5-LO-AA-Komplex interagieren kann. Darüber hinaus inhibiert EP6 die LT-Bildung unabhängig von der Art der 5-LO-Stimulation bei einer Zugabe von 20 µM exogener AA. Der physiologische Stimulus in PMNL über N-Formylmethionyl-Leucyl-Phenylalanin (fMLP) führt zu einem höheren IC50-Wert von 0,76 µM mit Zugabe von 20 µM AA und bestätigt die Ergebnisse von ionophor-stimulierten PMNL ohne Zugabe von exogenem Substrat. Für EP6 konnte weiterhin eine allosterische Bindestelle an der C2-ähnlichen Domäne der 5-LO postuliert werden. Die Zugabe von Phosphatidylcholin führte zu einer verminderten inhibitorischen Aktivität. Durch Experimente mit einer Mutante der 5-LO, bei der die Tryptophane, welche die Membranbindung vermitteln, ausgetauscht sind (3W-Mutante), konnte die Interaktion dieser Aminosäuren mit EP6 gezeigt werden. Über einen Kompetitionsassay mit der C2-ähnlichen Domäne, Mutations- und Docking-Studien, wurden die Aminosäuren Y81, Y100 und Y383 des Interfaces der beiden Domänen der 5-LO als essentiell für die Bindung identifiziert. Somit zählt EP6 als Vertreter der Klasse der Imidazo[1,2-a]pyridine neben Hyperforin und AKBA zu den einzigen mit der C2-ähnlichen Domäne interagierenden 5-LO-Inhibitoren.
EP6 ist ein selektiver Inhibitor der 5-LO, der die 15-LO1, 15-LO2 und 12-LO nicht inhibiert. Weiterhin werden drei weitere Enzyme der AA-Kaskade, die Cyclooxygenase-1 und -2 sowie die mikrosomale Prostaglandin E2 Synthase-1 nicht durch EP6 beeinflusst. Neben der humanen 5-LO wird auch die murine 5-LO, in intakten RAW 264.7 Zellen und deren S100 getestet, mit niedrig mikromolarem bzw. nanomolarem IC50-Wert inhibiert, was die erste Voraussetzung für potentielle in vivo Studien darstellt.
Die Inhibition der 5-LO-Produktbildung in humanem Vollblut konnte jedoch bis zu einer Konzentration von 30 µM EP6 nicht gehemmt werden. EP6 ist lipophil (clogP-Wert von 4,6) und weist eine hohe Plasmaproteinbindung (Bindung an humanes Serumalbumin von 97,5 ± 0,7% bei 10 µg/ml EP6) auf, was die Unwirksamkeit in humanem Vollblut erklären könnte.
Abschließend wurden die Effekte von EP6 auf die Zellviabilität untersucht. Die Experimente wurden zunächst in U937 bei einer Inkubationszeit von 48 h mit einer maximalen Konzentration von 30 µM EP6 durchgeführt. EP6 führt zu keinen unmittelbaren zytotoxischen Effekten innerhalb der Inkubationszeit der in dieser Arbeit durchgeführten Aktivitätsassays (gezeigt in PMNL). Weiter wurde jedoch gezeigt, dass die mitochondriale Aktivität nach Inkubation für 48 h mit einem EC50-Wert von 14 µM beeinträchtigt wird (WST-Assay). Dieser Effekt ist jedoch nicht auf Nekrose zurückzuführen, da die gemessene Konzentration an freigesetztem LDH gering bleibt. Über ein Langzeitexperiment wurde die Abnahme der Lebendzellzahl nach Inkubation mit 30 µM EP6 nach 24 h festgestellt. Über Detektion von PARP-Spaltung, einem Marker für späte Apoptose, stellte sich heraus, dass EP6 in U937 Apoptose induziert. Zusätzlich zu den Untersuchungen der leukämischen Zelllinie wurden humane nicht-tumor Zellen (RPE) im Langzeitexperiment sowie im BrdU-Assay untersucht. EP6 beeinträchtigt die Lebendzellzahl der nicht-tumor Zelllinie RPE nicht und führt nur zu geringen antiproliferativen Effekten.
Der gezielte, effiziente Aufbau komplexer Struktureinheiten, die mehrere Stereozentren besitzen, ist bis heute eine der größten Herausforderungen in der organischen Synthese. Gerade hinsichtlich der Wirkstoffentwicklung ist es von großer Bedeutung alle möglichen Stereoisomere einer Verbindung zugänglich zu machen. Die 1,3-Diamin-Struktureinheit ist Bestandteil interessanter Naturstoffe, biologisch aktiver Substanzen oder chiraler Liganden. Zusammenfassend konnte erfolgreich eine neue hoch modulare, stereokonvergente, Enamid/Acylimin-basierte Methode zur Synthese von 1,3-Diaminen mit drei fortlaufenden Stereozentren entwickelt werden. Diese Route bietet Zugang zur kompletten Tetrade möglicher Diastereomere, ausgehend von einfach zugänglichen Startmaterialien. Die Konfiguration der beiden zuerst gebildeten Stereozentren kann durch die Enamid-Geometrie kontrolliert werden ((E) -> 1,2 anti, (Z) -> 1,2-syn-Konfiguration). Die 2,3 Konfiguration kann hingegen über die geschickte Wahl der Reagenzien und den damit assoziierten Reaktionsbedingungen gesteuert werden. Weiterhin konnte eine Bi(OTf)3-katalysierte Ein-Topf-Sequenz zur diastereoselektiven Synthese von 1,2-anti-2,3-anti-1,3-Diaminen 6 etabliert werden. Darüber hinaus konnte die Synthese der N,O-Acetale, als auch die der Enamide optimiert und bzgl. der Synthesen im Multigrammmaßstab verbessert werden. Die N,O-Acetale konnten erfolgreich aus Amiden, Aldehyden und Alkoholen dargestellt werden. Die Enamide wurden unter Zuhilfenahme luftunempfindlicher Ni-Katalystoren aus Allylamiden mittels Isomerisierung zugänglich gemacht.
Der 2‘-Desoxyguanosin-Riboschalter gehört zur unter Bakterien weit verbreiteten Klasse der Purin-Riboschalter. Allerdings wurden 2‘-Desoxyguanosin-bindende Riboschalter bisher ausschließlich in M. florum gefunden, damit stellt diese RNA eine Ausnahme unter den ansonsten verbreiteten Purin-Riboschaltern dar. In der vorliegenden Arbeit wurde ein NMR-Strukturmodell des IA-Aptamer-2‘-Desoxyguanosinkomplexes erstellt und anhand der mittels NMRSpektroskopie zugänglichen strukturellen Informationen sowohl Struktur und Dynamik des freien RNA-Aptamers als auch des 2‘-Desoxyguanosinkomplexes charakterisiert. Dabei wurde insbesondere der Einfluss von Mg2+ auf Struktur und Dynamik der jeweiligen Zustände sowie auf den durch 2‘-Desoxyguanosin induzierten Faltungsprozess untersucht.
Mg2+-Ionen modulieren die Faltungstrajektorien von sensorischen RNA-Domänen. Die Übertragbarkeit von Mg2+-abhängigen Charakteristika der RNA-Faltung innerhalb verschiedener Messmethoden ist durch die schlechte Vergleichbarkeit der relativen Konzentrationsverhältnisse eingeschränkt. Die NMR-spektroskopisch beobachtbaren Mg2+-Einflüsse sollten also unter besonderer Berücksichtigung der für NMR benötigten vergleichsweise sehr hohen RNAKonzentrationen mit Ergebnissen aus kalorimetrischen oder fluoreszenzspektroskopischen Messungen interpretiert werden. Die in der NMR-Spektroskopie üblichen hohen Probenkonzentrationen befinden sich in dem Regime, in dem auch der physikalische Effekt des verdrängten Volumens eine Rolle zu spielen beginnt. Demnach ist es für die RNA-Moleküle im NMR-Probenröhrchen bei Konzentrationen von 5-10 mg/ml auch ohne Zugabe von Mg2+ entropisch günstiger, kompakte Konformationen einzunehmen. Die Relevanz des Effekts des verdrängten Volumens für die RNA-Faltung unter NMR-Bedingungen und unter zellulären Bedingungen ist Gegenstand der aktuellen Forschung und wird in dieser Arbeit am Beispiel des IA-Aptamers diskutiert.
Der oft einzigartige Bindungsmodus ubiquitärer Metaboliten durch bakterielle Riboschalter (Montange and Batey, 2006) ermöglicht prinzipiell den Einsatz von RNA-Aptameren in vivo, ohne mit zellulären Proteinsystemen zu interferieren (Mulhbacher et al., 2010). Therapeutische Ziele sind beispielsweise die Anwendung von Riboschaltern gegen bakterielle Pathogene beziehungsweise gegen pathogene Bakterien selbst. Eine weitere Rolle wird RiboschalterElementen zukünftig als Bausteine in der synthetischen Biologie zukommen (Dixon et al., 2010; Knight, 2003; Topp and Gallivan, 2008). Hierfür ist es von grundlegender Bedeutung, Charakterisierung von Struktur als Basis für das Verständnis von Funktion unter zellulären Bedingungen zu etablieren. Im Rahmen einer Zusammenarbeit mit Robert Hänsel aus dem Arbeitskreis von Prof. Dr. Volker Doetsch wurde am Beispiel des IA-Aptamers und einer nichtnatürlichen Sequenzvariante gezeigt, dass eine strukturelle Charakterisierung von Riboschaltern mittels in cell NMR-Spektroskopie möglich ist. In Zusammenarbeit mit Karl von Laer aus der Arbeitsgruppe von Prof. Dr. Beatrix Suess wurden beide RNA-Aptamer hinsichtlich ihrer Funktion in einem biologischen Assay getestet. Die Ergebnisse dieser Experimente zeigten eine deutliche Korrelation von Struktur und Funktion in vivo, während Diskrepanzen zwischen Struktur in vitro und Funktion in vivo demonstriert werden.
Weiterhin wurde im Rahmen dieser Arbeit gezeigt, dass eine gewisse strukturelle Flexibilität der Bindungstaschen regulatorischer RNA-Motive für Selektion und Adaption während Evolution nötig ist. Beispielsweise wurde für den Guanin-Riboschalter gezeigt, dass der nicht-native Ligand 2‘-Desoxyguanosin zur Komplexbildung des Aptamers führt. Demnach könnte die Bindung von 2‘-Desoxyguanosin im Guanin-Riboschalter bereits evolutionär angelegt sein und die Entstehung des IA-Aptamers nach Genomreduktion der Mesoplasmen begünstigt haben. Das IA-Aptamer dagegen bindet Guanin nicht, stattdessen besitzt M. florum auf Guanin spezialisierte Sequenzvarianten dieses Riboschalters (Kim et al., 2007). Strukturell hochauflösende Einblicke in unterschiedliche Zustände der Bindungstasche im G-Aptamer-Thioguaninkomplex, die durch die Lösung der Kristallstruktur des GLoop-Aptamers ermöglicht wurden, unterstützen die Hypothese einer anpassungsfähigen Bindungstasche im G-Aptamer. Für B. subtilis wäre es interessant, die physiologische Bedeutung der Komplexbildung des G-Aptamers mit 2‘-Desoxyguanosin zu untersuchen.
Das Ziel der vorliegenden Arbeit war es, MALDI-Massenspektrometrie als robuste Analysenmethode für die quantitative Analyse niedermolekularer Verbindungen aus komplexen biologischen Matrizes zu etablieren. Zu Beginn der Arbeit wurden drei typische Fragestellungen im Bereich der Lebensmittelanalytik, der medizinischen Forschung und der klinischen Chemie ausgewählt, um die Methodik anhand dieser Modellsysteme zielgerichtet zu entwickeln und zu bewerten. Für jede dieser Fragestellungen wird routinemäßig ein hoher Probendurchsatz verlangt und damit werden hohe Anforderungen an die Probenvorbereitung gestellt, da diese einfach, schnell, reproduzierbar, Matrix-tolerant und automatisierbar sein muss um die Weiterentwicklung zur Hochdurchsatzanalytik zu erlauben.
Der quantitative Nachweis von Melamin und seinen Derivaten wurde aufgrund des Aufkommens von Milchprodukten, die mit diesen Verbindungen kontaminiert waren, ein wichtiger Bestandteil der Analytik dieser Lebensmittel. Insbesondere an diesem Beispiel zeigte sich der Vorteil des Einsatzes von MALDI-Massenspektrometrie zur Analyse kleiner Moleküle. Aufgrund der höheren Toleranz gegenüber Puffern und Salzen konnte die Probenvorbereitungszeit der für die FDA entwickelten Methode zur Quantifizierung von Melamin in Milchpulver mittels LC-ESI von ca. 140 min auf 90 min reduziert werden, da auf die zeitaufwendige Flüssigchromatographie verzichtet werden konnte. So wurde Melamin mit einem LLOQ von 0,5 ppm quantifiziert, was unterhalb der Vorgaben der WHO (2,5 ppm in Milichpulver und 1 ppm in Babynahrung) lag. Cyanursäure, ein Derivat von Melamin welches für die Bildung schwerlöslicher Komplexe in der Niere mitverantwortlich gemacht wird, konnte ebenfalls mit der entwickelten MALDI-MS Methode quantifiziert werden. Allerdings war die ermittelte Bestimmungsgrenze mit 15 ppm um den Faktor 30 schlechter als bei Melamin. Die Nachweisgrenze bei MALDI-MS ist stark von der MALDI-Matrix abhängig und die Verwendung von Sinapinsäure war eine gute Kompromisslösung, um die Analyten in einem Spot im positiven und negativen Reflektormodus zu analysieren. Allerdings wurde diese Matrix zur Analyse von Analyten im positiven Reflektormodus entwickelt. Bislang wurden nur wenige Matrizes für MALDI-MS im negativen Reflektormodus beschrieben, um z.B. Säuren besser nachweisen zu können. Forschung in diesem Bereich wird neue Möglichkeiten zur Detektion negativ geladener kleiner Moleküle ergeben.
Des Weiteren wurden im Rahmen dieser Arbeit auch Lösungen für klinische Fragestellungen wie etwa den Nachweis von Methylphenidat im Plasma und Gehirn von Ratten oder der Dried Blood Spot Analytik entwickelt. Bei beiden Methoden wurde jeweils nur eine einfache Flüssig-Flüssig-Extraktion zur Probenvorbereitung angewendet und sie ließen sich sehr gut auf Realproben übertragen.
Methylphenidat konnte im Plasma im Konzentrationsbereich von 0,1-40 ng/mL und im Hirnhomogenat im Konzentrationsbereich von 0,4-40 ng/mL quantifiziert werden, was gut im Konzentrationsbereich der Realproben von mit Methylphenidat gefütterten Ratten lag. Dazu standen das Plasma und die Gehirne von fünf Ratten zur Verfügung. Es wurde eine lineare Korrelation zwischen der MPH-Konzentration im Gehirnhomogenat und im Plasma gefunden, was basierend auf den bis dato bekannten Literaturergebnissen ein zu erwartendes Ergebnis war, aber zukünftig mit einer größeren Anzahl von Versuchstieren verifiziert werden sollte. Während der Methodenentwicklung war auch bei diesem Projekt die Auswahl der MALDI-Matrix ausschlaggebend für den Erfolg der Messungen. Im MALDI-Massenspektrum interferierte das Signal des Natriumaddukts von CHCA mit dem Signal von MPH. Für dieses Problem kamen zwei mögliche Lösungen in Betracht. Erstens die Quantifizierung mit ClCCA als MALDI-Matrix, da hier keine Interferenzen auftraten. In ersten Vorversuchen konnte MPH so in einem Konzentrationsbereich von 1-48 ng/mL mit einer exzellenten Linearität von R2=0,9992 quantifiziert werden. Eine zweite mögliche Problemlösung war die Verwendung von Tandem-Massenspektrometrie. Hierzu wurden Fragmentionen-Massenspektren der überlagerten Signale aufgenommen. MPH und der verwendete interne Standard MPH-d9 zeigten dabei spezifische Fragmentionensignale, über die quantifiziert wurde. Da die Sensitivität um den Faktor 100 im Vergleich zu MS-Spektren von CHCA und ClCCA gesteigert werden konnte, wurde die weitere Methodenentwicklung basierend auf der Tandem-Massenspektrometrie mit der MALDI-Matrix CHCA durchgeführt. Überdies sind MS/MS-Versuche unter Verwendung von ClCCA als MALDI-Matrix für kleine Moleküle sehr erfolgsversprechend und sollten in weiteren Forschungsarbeiten durchgeführt werden.
Die Dried Blood Spot Technik als alternative Probenvorbereitung bietet eine Reihe von Vorteilen, wie etwa den einer einfacheren Lagerung und eines einfacheren Transports einer großen Menge von Proben. Darüber hinaus werden nur wenige Mikroliter Blut verwendet, was vorteilhaft ist bei z B. klinischen Studien oder dem Therapeutic Drug Monitoring. Diese Art der Probennahme ist somit eine perfekte Ergänzung für weitere quantitative Analysen von Methylphenidat in Rattenblut. Den Ratten würden nur wenige Mikroliter Blut entnommen werden, was ihr Überleben sichert und der Transport der Proben auf dem Postweg wäre wesentlich einfacher. Um eine allgemein verwendbare DBS-MALDI-MS-Methode zu entwickeln, wurden neben Methylphenidat auch bekannte Analyten aus dem Bereich des Dopings sowie Lamotrigin, Coffein und Theophyllin als Beispiele für das Therapeutic Drug Monitoring verwendet. Es wurden verschiedene Lösungsmittel zur Extraktion eingesetzt, wobei sich eine Kombination aus Methyl-tert-Butylether und Ethanol, sowie Aceton als am besten geeignet erwies. Einige Analyten wie Coffein, Theophyllin und Lamotrigin wurden bis zu einer Konzentration von 0,5 μg/mL quantifiziert. Diese Bestimmungsgrenze ist bei Analyten aus dem Bereich des Dopings wie z.B. Salbutamol, Methylphenidat oder Clenbuterol, deren therapeutisch wirksame Plasmakonzentration im Bereich von wenigen Nanogramm pro Milliliter Blut liegt, um den Faktor 15-500 zu hoch. Diese Analyten waren bis zu einer Konzentration von 5 μg/mL im Blut mittels MALDI-MS problemlos nachweisbar. Um die Sensitivität zu erhöhen, ist es allerdings sinnvoll, die Extraktion zukünftig für die einzelnen Analyten zu optimieren, sie mittels Festphasenextraktion oder LC anzureichern und MS/MS-Spektren aufzunehmen. Für die Analyten Coffein, Theophyllin und Lamotrigin, deren therapeutisch wirksame Plasmakonzentration im ein- bis zweistelligen Mikrogramm-pro-Milliliter Bereich liegt, eignete sich die entwickelte Methode sehr gut. Es wurde eine Methodenvalidierung durchgeführt, wobei die validierten Parameter den Vorgaben der FDA entsprachen.
Da die Auswahl der MALDI-Matrix bei den verschiedenen Methodenentwicklungen jeweils ein kritischer Faktor war, wurden abschließend eine Auswahl von Analyten mit einer Molekülmasse bis ca. 600 Da mit verschiedenen MALDI-Matrizes präpariert. Ein Großteil der Analyten wurde am sensitivsten mit ClCCA nachgewiesen. Im Rahmen dieser Versuche wurde auch erstmals ein Strukturanalogon von ClCCA, und zwar ClCCA-Tetrazol, als alternative MALDI-Matrix eingesetzt, bei welchem die Carboxylgruppe durch einen Tetrazolring ausgetauscht wurde. Diese zeigte eine sehr homogene Kristallisation und für einige Analyten eine bis zu Faktor 3 höhere Signalintensität im Vergleich zu ClCCA. Außerdem war auffällig, dass einige Analyten unter bestimmten Präparationsbedingungen wie z B. der Graphite Supported Preparation sensitiver mittels MALDI-MS nachweisbar waren. Bei anderen Analyten verschlechterten sich die Analysenergebnisse. Graphit verändert stark die Kristallisation der MALDI-Matrix und es wird vermutet, dass sich dies auf den Einbau der Analyten in die Matrixkristalle auswirkt. Es konnte bislang aber noch nicht abschließend geklärt werden, wie genau die Präparation der Proben Einfluss auf den Einbau der Analyten in die Matrix nimmt. Eine Untersuchung dieser Phänomene sollte daher Gegenstand weiterer Forschungsprojekte sein.
Zusammenfassend stellt die MALDI-Massenspektrometrie eine schnelle und robuste Methode zur Quantifizierung einer Vielzahl kleiner Moleküle in komplexen biologischen Matrizes dar.
Die Modulation molekularer Systeme mit Licht ist ein in den letzten Jahren immer stärker untersuchtes Forschungsgebiet. Es existiert bereits eine große Anzahl an Publikationen, die mittels statischer Spektroskopie und anderer statischer Methoden Einblicke in die ablaufenden Prozesse gewähren konnten. Untersuchungen im Ultrakurzzeitbereich sind jedoch eher selten, liefern aber detaillierte Informationen zu den ablaufenden Prozessen. Den Wissensstand diesbezüglich zu erweitern, war Ziel dieser Dissertation.
Untersucht wurden neun photoschaltbare, molekulare Dyaden hinsichtlich ihrer Dynamik nach Photoanregung. Die Dyaden setzten sich aus einem Fluorophor (Bordipyrromethen, BODIPY), einem Photoschalter (Dithienylethen, DTE; offen oder geschlossen) und gegebenenfalls einer COOH-Ankergruppe zusammen.
Die Unterschiede in den Molekülstrukturen bestanden in der Verknüpfung der einzelnen Bauteile (kurze oder lange, beziehungsweise gerade oder gewinkelte Brücke) und der Art des Fluorophors und des Photoschalters (jeweils zwei verschiedene Strukturen).
Durch Belichtung mit UV- oder sichtbarem Licht konnten photostationäre Zustände generiert werden, die 40 – 98 % geschlossenes Isomer (je nach Molekül) beziehungsweise 100 % offenes Isomer enthielten.
Unter Verwendung von Licht verschiedener Wellenlängen konnten beide Teile der Dyade (BODIPY beziehungsweise DTE) separat angeregt und hinsichtlich der ablaufenden Photodynamik untersucht werden, wobei der Fokus der Arbeit auf transienten Absorptionsmessungen mit Anregung des BODIPY lag. Bei einem Großteil der untersuchten Moleküle kam es in diesem Fall, je nach Zustand des Photoschalters, zu einem intramolekularen Energietransfer nach der Theorie von Theodor Förster. Durch diese Energietransferprozesse kommt es zu einer drastischen Verkürzung der Lebenszeit des angeregten Zustands des BODIPY. Ausgehend von Lebenszeiten im Bereich von Nanosekunden im Falle der offenen Dyaden (entspricht der Fluoreszenzlebensdauer) reduziert sich die Lebenszeit auf wenige Pikosekunden, beziehungsweise je nach Aufbau des Moleküls sogar noch weiter. Die unterschiedlich schnellen Transferprozesse sind im Sinne der Förster-Theorie durch die unterschiedlichen Entfernungen und relativen Orientierungen der beiden beteiligten Übergangsdipolmomente (von DTE und BODIPY) erklärbar.
Neben Experimenten mit Anregung des BODIPY-Teils der Dyaden wurden weitere Experimente durchgeführt, in denen der geschlossene Photoschalter direkt angeregt wurde. Aus diesen Messungen konnten Erkenntnisse über die Relaxation des DTE erlangt werden. Auf diese Weise war es möglich, bei einigen der Moleküle die Ringöffnungsreaktion zu beobachten und zu charakterisieren. Im Fall von Dyade 4 konnten zusätzlich kohärente Schwingungen des Moleküls nach Photoanregung detektiert werden, die sich anhand einer Frequenzmodulation der Absorptionsbande des BODIPY-Teils über einen Zeitbereich von 2 ps beobachten ließen.