Refine
Document Type
- Doctoral Thesis (3) (remove)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Physik (3)
Die Untersuchung der Eigenschaften von Hadronen und ihren Konstituenten (Quarks und Gluonen) in heißer und/oder dichter Kernmaterie ist eines der Hauptziele der Physik mit schweren Ionen. Der Zustand dichter und heißer Materie kann im Labor für kurze Zeit in der Reaktionszone von relativistischen Schwerionenkollisionen geschaffen werden. Einen Einblick über die Eigenschaften der starken Wechselwirkung und über die Massenerzeugung der Hadronen geben Dileptonen-Experimente, da Leptonen nicht von der starken Wechselwirkung beeinflusst werden. Unabhängig von der Strahlenergie zeigen die invarianten Massenspektren der Dileptonen in Schwerionenkollisionen im Vergleich zur Superposition der erwarteten hadronischen Zerfälle im Vakuum einen Überschuss im invarianten Massenbereich 0,2 - 0,6 GeV/c². Während dieser Überschuss bei CERN-SPS Energien in Zusammenhang mit der In-Medium-Modifikation der Spektralfunktion des Rho-Mesons gebracht wird, konnte die hohe Zahl der Dileptonen, die von der DLS Kollaboration in C + C und Ca + Ca bei 1 GeV/u beobachtet wurde, bis zum Erscheinen der HADES Daten nicht zufrieden stellend erklärt werden. Die Diskrepanz zwischen experimentellen Daten und Transportrechnungen erhielt den Namen "DLS Puzzle". In diesem Zusammenhang wurde eine kontroverse Diskussion über die Validität der Ergebnisse der DLS Kollaboration geführt. Das HADES Detektorsystem (High Acceptance Di-Electron Spectrometer), das sich am Schwerionensynchroton der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt befindet, ist zur Zeit das einzige Experiment, das Dielektronen bei Projektilenergien von 1 - 2 GeV/u misst. Es tritt somit die Nachfolge des DLS Experiments an. Jedoch ist HADES durch zahlreiche technische Verbesserungen, u.a. Massenauflösung und Akzeptanz, im Vergleich zum Spektrometer DLS ein Experiment der 2. Generation. Erste Ergebnisse der Messung 12C + 12C bei 2 GeV/u der HADES Kollaboration bestätigen den generellen Trend einer erhöhten Zählrate im Vergleich zu den erwarteten Beiträgen von hadronischen Zerfällen. Es stellt sich die Frage, wie sich diese Beobachtung zu kleineren Strahlenergien hin fortsetzt. Im Rahmen der vorliegenden Arbeit wird die mit dem HADES Detektorsystem durchgeführte Messung der Dielektronenproduktion in der Schwerionenkollision 12C + 12C bei einer Projektilenergie von 1 GeV/u ausgewertet. Wesentliche Zielsetzungen sind u. a. die Überprüfung der DLS Daten und die Bestimmung der Anregungsfunktion des Überschusses. In der Analyse wird demonstriert, dass Leptonen effizient nachgewiesen werden. Die dargestellte Paaranalyse zeigt, dass der kombinatorische Untergrund erfolgreich reduziert und die Menge der wahren Dielektronen weitgehend erhalten werden kann. Nach Abzug des kombinatorischen Untergrundes werden die effizienzkorrigierten und normierten invarianten Massen-, Transversalimpuls- und Rapiditätsverteilungen der Dielektronen untersucht. Die Ergebnisse werden mit hadronischen Cocktails verschiedener theoretischer Ansätze verglichen. Diese beinhalten die Beiträge kurz- und langlebiger Dileptonenquellen einer thermischen Quelle (PLUTO) sowie mikroskopische Transportrechnungen (HSD,IQMD). Im Massenbereich 0,2 - 0,6 GeV/c² wird der gemessene Überschuss relativ zu den Vorhersagen bestätigt. Zusammen mit den Ergebnissen der Messung 12C + 12C bei 2 GeV/u zeigt sich, dass der Überschuss mit abnehmender Strahlenergie relativ zunimmt. Eine detaillierte Analyse zeigt, dass der Überschuss in dem Massenintervall 0,15 - 0,5 GeV/c² als Funktion der Projektilenergie entsprechend der Zahl der produzierten neutralen Pionen und nicht wie die Zahl des Eta-Mesons skaliert. Der direkte Vergleich der HADES mit den DLS Ergebnissen zeigt, dass die Daten der vorliegenden Arbeit mit den für lange Zeit angezweifelten DLS Resultaten übereinstimmen. Die Frage nach dem physikalischen Ursprung des Überschusses rückt somit erneut in den Vordergrund. In diesem Zusammenhang ist das Studium der Dileptonenproduktion in elementaren Reaktionen p + p und d + p wichtig. Neuere Rechnungen mit einem One Boson Exchange (OBE) Modell deuten darauf hin, dass die Beiträge von p-p und hauptsächlich p-n zur Bremsstrahlung signifikant höher sind als bisher vermutet. Eine aktualisierte Transportrechnung (HSD), deren Parametrisierung der Bremsstrahlung durch dieses OBE Resultat inspiriert ist, scheint in der Lage zu sein, die Ergebnisse der Messungen 12C + 12C bei 1 GeV/u der HADES und DLS Kollaboration recht gut zu beschreiben. Die entsprechenden Vergleiche sind dargestellt und werden diskutiert. Aber auch die Transportrechnung IQMD erklärt die HADES Daten recht gut. Daher ist es offensichtlich, dass eine direkte Gegenüberstellung der OBE Modellrechnungen und der von der HADES Kollaboration gemessenen und derzeit analysierten Daten zur Dileptonenproduktion in p + p und d + p Reaktionen erforderlich ist. Nur so können sichere Schlüsse über den Ursprung der Dileptonen bei SIS Energien gezogen werden.
Ein wesentlicher Forschungsgegenstand der Kernphysik ist die Untersuchung der Eigenschaften von Kernmaterie. Das Verständnis darüber gibt in Teilen Aufschluss über die Erscheinungsweise und Wechselwirkung von Materie. Ein Schlüssel liegt dabei in der Untersuchung der Modifikation der Eigenschaften von Hadronen in dem Medium Kernmaterie, das durch Parameter wie Dichte und Temperatur gekennzeichnet werden kann. Man hofft damit unter anderem Einblick in die Mechanismen zu bekommen, welche zur Massenbildung der Hadronen beitragen. Zur Untersuchung solcher Modifikationen eignen sich insbesondere Vektormesonen, die in e+e- Paare zerfallen. Die Leptonen dieser Paare wechselwirken nicht mehr stark mit der Materie innerhalb der Reaktionszone, und tragen somit wichtige Informationen ungestört nach außen. Das HADES-Spektrometer bei GSI wird dazu verwendet die leichten bei SIS-Energien produzierten Vektormesonen rho, omega und phi zu vermessen. Hierzu wurde zum erste mal das mittelschwere Stoßsystem Ar+KCl bei einer Strahlenergie von 1,76 AGeV gemessen. Die im Vergleich zum früher untersuchten System C+C höhere Spurmultiplizität innerhalb der Spektrometerakzeptanz verlangte eine Anpassung der bisher verwendeten Datenanalyse. Das bisher verwendete Verfahren, mehrere scharfe Schnitte auf verschiedene Observablen seriell anzuwenden, um einzelne Leptonspuren als solche zu identifizieren, wurde durch eine neu entwickelte multivariate Analyse ersetzt. Dabei werden die Informationen aller beteiligten Observablen mit Hilfe eines Algorithmus zeitgleich zusammengeführt, damit Elektronen und Positronen vom hadronischen Untergrund getrennt werden können. Durch Untersuchung mehrerer Klassifizierer konnte ein mehrschichtiges künstliches neuronalen Netz als am besten geeigneter Algorithmus identifiziert werden. Diese Art der Analyse hat den Vorteil, dass sie viel robuster gegenüber Fluktuationen in einzelnen Observablen ist, und sich somit die Effizienz bei gleicher Reinheit steigern lässt. Die Rekonstruktion von Teilchenspuren im HADES-Spektrometer basiert nur auf wenigen Ortsinformationen. Daher können einzelne vollständige Spuren a priori nicht als solche gleich erkannt werden. Vielmehr werden durch verschiedene Kombinationen innerhalb derselben Mannigfaltigkeit von Positionspunkten mehr Spuren zusammengesetzt, als ursprünglich produziert wurden. Zur Identifikation des maximalen Satzes eindeutiger Spuren eines Ereignisses wurde eine neue Methode der Spurselektion entwickelt. Während dieser Prozedur werden Informationen gewonnen, die im weiteren Verlauf der Analyse zur Detektion von Konversions- und pi0-Dalitz-Paaren genutzt werden, die einen großen Beitrag zum kombinatorischen Untergrund darstellen. Als Ergebnis wird das effizienzkorrigierte, und auf die mittlere Zahl der Pionen pro Ereignis normierte, Spektrum der invarianten Elektronpaarmasse präsentiert. Erste Vergleiche mit der konventionellen Analysemethode zeigen dabei eine um etwa 30% erhöhte Rekonstruktionseffizienz. Das Massenspektrum setzt sich aus mehr als 114.000 Paaren zusammen -- über 16.000 davon mit einer Masse größer als 150 MeV. Ein erster Vergleich mit einem einfachen thermischen Modell, welches durch den Ereignisgenerator Pluto dargestellt wird, eröffnet die Möglichkeit, die hier gefundenen Produktionsraten des omega- und phi-Mesons durch m_T-Skalierung an die durch andere Experimente ermittelten Raten des eta zu koppeln. In diesem Zusammenhang findet sich weiterhin ein von der Einschussenergie abhängiger Produktionsüberschluss von F(1,76) = Y_total/Y_PLUTO = 5,3 im Massenbereich M = 0,15...0,5 GeV/c^2. Die theoretische Erklärung dieses Überschusses birgt neue Erkenntnisse zu den in-Medium Eigenschaften von Hadronen.
Statistical physics of power flows on networks with a high share of fluctuating renewable generation
(2010)
Renewable energy sources will play an important role in future generation of electrical energy. This is due to the fact that fossil fuel reserves are limited and because of the waste caused by conventional electricity generation. The most important sources of renewable energy, wind and solar irradiation, exhibit strong temporal fluctuations. This poses new problems for the security of supply. Further, the power flows become a stochastic character so that new methods are required to predict flows within an electrical grid. The main focus of this work is the description of power flows in a electrical transmission network with a high share of renewable generation of electrical energy. To define an appropriate model, it is important to understand the general set-up of a stable system with fluctuating generation. Therefore, generation time series of solar and wind power are compared to load time series for whole Europe and the required balancing or storage capacities analyzed. With these insights, a simple model is proposed to study the power flows. An approximation to the full power flow equations is used and evaluated with Monte-Carlo simulations. Further, approximations to the distributions of power flows along the links are analytically derived. Finally, the results are compared to the power flows calculated from the generation and load data.