Refine
Year of publication
Document Type
- Doctoral Thesis (82) (remove)
Language
- German (82) (remove)
Has Fulltext
- yes (82)
Is part of the Bibliography
- no (82)
Keywords
- Arzneimittel (2)
- Pharmazeutische Technologie (2)
- Pharmazie (2)
- Schmerz (2)
- Wirkstofffreisetzung (2)
- 2-Photonen (1)
- Aptamer (1)
- Aptamere (1)
- Arzneimittelanalogon (1)
- Bindungsanalyse (1)
Institute
- Biochemie, Chemie und Pharmazie (82) (remove)
FPP und GGPP sind Intermediate des Mevalonat-Weges und fungieren als post-translationale Modifikation kleiner GTPasen. Die Prenylierung kleiner GTPasen erfolgt katalysiert von spezifischen Prenyltransferasen und ist notwendig um die kleinen GTPasen in Membranen zu verankern, wo ihre Aktivierung stattfindet. Zu den intrazellulären Funktionen der GTPasen gehören unter anderem der Aufbau des Cytoskeletts, das neuronale Zellwachstum, die Leitung und Ausläuferbildung von Axonen, das Dendritenwachstum, die Synapsenformation, die synaptische Plastizität und die Apoptose. Diese Funktionen spielen in der Gehirnalterung sowie in neurodegenerativen Erkrankungen wie der Alzheimer Demenz (AD) und auch bei der Glioblastoma multiforme (GBM) eine wichtige Rolle.
Im Zuge einer in vivo Studie an C57BL/6 Mäusen konnten in der vorliegenden Arbeit altersbedingte Veränderungen der Lokalisation verschiedener Rho- und Rab-GTPasen in Membran- und Cytosol-Präparationen sowie der GGTase-I in Gehirnen gealterter Tiere gezeigt werden. Die zelluläre Lokalisation der Rho GTPasen Rac1, RhoA und Cdc42 verschiebt sich im Alter zu reduzierten Membran-gebundenen und erhöhten cytosolischen Gehalten. Dies ist mit einer Reduktion der Protein- und mRNA- Gehalte des Enzyms GGTase-Iβ assoziiert, der Untereinheit der GGTase-I, die die Bindung des Isoprenoids GGPP an die Rho-GTPasen reguliert. Diese wiederum korrelieren direkt mit der altersbedingten Reduktion der relativen GGTase-Aktivität. Die in vitro Inhibition der GGTase-I mittels GGTI-2133 an SH-SY5Y Zellen erwies sich als Modell, welches die gleichen Effekte wie die gealterten Gehirne in vivo zeigt.
7, 8-Dihydroxyflavon (7, 8-DHF) ist ein natürlich vorkommendes Flavon, welches als hoch affiner selektiver TrkB-Rezeptor-Agonist fungiert und hierdurch wie das Neurotrophin BDNF das Überleben von Neuronen, deren Differenzierung, synaptische Plastizität und Neurogenese vermittelt. In vivo verursacht die orale Gabe von 7, 8-Dihydroxyflavon in Gehirnen alter Tiere eine Abnahme des Isoprenoids GGPP, die Zunahme der prenylierten Membran-gebundenen GTPase Rac1 und eine Reduktion des Gehaltes an Membran-gebundenem Rab3A auf das Niveau der Gehalte in den Gehirnen der jungen Kontroll-Tiere. Das Neurotrophin BDNF interagiert mit dem TrkB-Rezeptor und ist in der Lage direkt an den Rac1-spezifischen GEF Tiam1 zu binden, wodurch dieser aktiviert wird und Veränderungen der zellulären Morphologie der betroffenen Neurone induziert. Während das Alter und die orale Gabe von 7, 8-Dihydroxyflavon in vivo keine Effekte auf die Proteingehalte von BDNF und TrkB in der Tierstudie aufzeigten, konnte eine alterbedingte Reduktion von Tiam1 im Hirngewebe detektiert werden, die wiederum durch 7, 8-Dihydroxyflavon aufgehoben werden konnte.
Die Isoprenoide FPP und GGPP, sowie die Regulation kleiner GTPasen spielen auch eine wichtige Rolle im Zusammenhang mit Veränderungen der APP-Prozessierung in der molekularen Pathogenese der AD. Bei der APP-Prozessierung sind die beiden Sekretasen β- und γ-Sekretase für die Bildung des β-Amyloid-Peptids verantwortlich. In vitro Studien mit dem β-Sekretase-Inhibitor IV und dem γ-Sekretase-Inhibitor DAPT an untransfizierten und APP-transfizierten HEK293 Zellen (HEK293-APP695wt und HEK293-APPsw Zellen) konnten zeigen, dass sowohl die β- als auch die γ-Sekretase an der Regulation der Isoprenoide FPP und GGPP beteiligt sind. FPP und GGPP liegen in APP-transfizierten HEK293 Zellen erhöht vor. Die Inhibition der β-Sekretase führt zur Reduktion von FPP und GGPP. Durch die Inhibition der γ-Sekretase wird ausschließlich FPP reduziert. Weiterhin liegen in APP-transfizierten HEK293 Zellen die Membran-gebundenen prenylierten Rho-GTPasen Rac1, Cdc42 und RhoA erhöht vor. Das Membran-gebundene prenylierte H-Ras kommt jedoch in APP-transfizierten Zellen im Vergleich zu untransfizierten HEK293 Zellen in deutlich niedrigeren Mengen vor. Die Inhibition der β-Sekretase bedingt die Reduktion von Membran-gebundenem prenylierten Rac1 und auch von Membran-gebundenem H-Ras in HEK293-APPsw Zellen.
Veränderungen von Signaltransduktionswegen, die durch kleine GTPasen vermittelt werden, haben sich auch bei der GBM als zentraler Teil der molekularen Pathogenese herausgestellt. Hierbei ist die Prenylierung durch FPP und GGPP die Voraussetzung für die Membran-Insertion und onkogenen Funktion der Ras- und Rho-Proteine über die Stimulierung des Ras-Raf-MEK-ERK Signalweges. In dieser Arbeit konnte gezeigt werden, dass der HMG-CoA-Reduktase Inhibitor Lovastatin die Bildung der beiden Isoprenoide FPP und GGPP in U87 und U343 Glioblastoma Zellen verringert und hierdurch die Isoprenylierung von H-Ras und Rac1 reduziert. Das natürlich vorkommende Monoterpen Perrilylalkohol hingegen inhibiert die Prenyltransferasen FTase und GGTase und verändert dadurch die post-translationale Prenylierung der GTPasen Rac1 und H-Ras in U87 und U343 Zellen ohne die Isoprenoide FPP und GGPP signifikant zu beeinflussen. Jedoch bewirkt Perillylalkohol in U343 Zellen eine Erhöhung des GGPPs. Beide Substanzen bewirkten die Reduktion der ERK-Phosphorylierung und der Migration, Invasion und Proliferation der untersuchten U87 und U343 Glioblastoma Zellen.
Um molekulare Mechanismen in biologischen Prozessen zu verstehen, ist es unerlässlich biologisch aktive Verbindungen zu kontrollieren. Dabei spielt besonders die Aktivierung bzw. Desaktivierung von Genabschnitten eine zentrale Rolle in der gegenwärtigen chemischen, biologischen und medizinischen Forschung. Nukleinsäuren sind dabei offenkundige Zielmoleküle, da sie die Genexpression auf unterster Ebene regulieren und auf vielfältige Art und Weise an biologischen Prozessen beteiligt sind. Um solch eine genaue Steuerung zu erreichen, werden Nukleinsäuren häufig photolabil modifiziert und unter die Kontrolle von Licht gebracht. Da hochentwickelte Technologien es erlauben Photonen bestimmter Energie unter präziser räumlicher und zeitlicher Auflösung zu dosieren, ist Licht als nicht invasives Triggersignal ein besonders geeignetes Werkzeug um molekulare Prozesse zu kontrollieren.
Die Verwendung photolabiler Schutzgruppen („cage“) ermöglicht es, diese lichtaktivierbaren Nukleinsäuren („caged compound“) herzustellen. Üblicherweise werden Oligonukleotide damit an funktionsbestimmenden Stellen versehen, woraufhin die Funktion der Oligonukleotide unterdrückt wird. Die biologische Aktivität kann durch Bestrahlung mit Licht wieder hergestellt werden, da die photolabile Schutzgruppe durch den Lichtimpuls abgespalten wird. Neben der zeitweiligen Maskierung der Nukleinsäureaktivität existiert auch eine Methode, die als „photoaktivierbarer Strangbruch“ (‘‘caged strand break‘‘) bezeichnet wird. Dabei werden mit Hilfe von photolabilen Linkern (‘‘Verknüpfer‘‘) lichtinduzierte Strangbrüche in Oligonukleotiden ausgelöst, um so beispielsweise die Struktur eines Nukleinsäurestrangs zu zerstören. Die Idee der photoaktivierbaren Strangbrüche ist nicht neu, dennoch werden photolabile Schutzgruppen überwiegend nach der erstgenannten Strategie verwendet. Im Rahmen dieses Promotionsvorhabens wurden neue photosensitive Linkerbausteine für Oligonukleotide entwickelt und hergestellt, welche sich vor allem im Hinblick auf die Anwendbarkeit in lebenden biologischen Systemen von den bisherigen photolabilen Linkern unterscheiden.
Im ersten Projekt wurde ein nicht-nukleosidischer, photolabiler Linker, basierend auf dem Cumaringrundgerüst, entwickelt. Das Ziel war hier, vor allem, einen zweiphotonenaktiven Linker für biologische Anwendungen und Zweiphotonen-Fragestellungen nutzbar zu machen. Bisherige Zweiphotonen-Linker konnten hauptsächlich nur für Proteinverknüpfungen bzw. Neurotransmitter verwendet werden oder mussten chemisch umständlich (z.B. Click-Chemie) und postsynthetisch in Oligonukleotide eingeführt werden. Der neu entwickelte Zweiphotonen-Linker wurde als Phosphoramiditbaustein für die Oligonukelotid-Festphasensynthese synthetisiert, was einen problemlosen und automatisierten Einbau garantiert. Mit einem modifizierten Oligonukleotid konnten die photochemischen Eigenschaften des Linkers bestimmt und mit Hilfe eines fluoreszenzbasierten Verdrängungsassays und Lasertechniken der Zweiphotonen-Effekt visualisiert werden. Dazu wurde ein Hairpin-DNA-Strang hergestellt, welcher eine Linkermodifikation im Bereich der Loopregion enthält. Durch eine Thiolmodifikation am 5‘-Ende des Oligonukleotidstranges war es möglich, diesen in einem Maleimid-funktionalisierten Hydrogel zu fixieren. Ein DNA-Duplex mit einem Fluorophor/Quencherpaar und einer korrespondierenden Sequenz zum modifizierten Hairpin-Strang wurde ebenfalls dem System zugegeben, allerdings wurde dieser nicht fixiert, um Diffusion zu ermöglichen. Durch die räumliche Nähe des Fluorophors zum Quencher konnte im unbelichteten Zustand zunächst keine Fluoreszenz gemessen werden. Mit einem (Femtosekunden-)gepulsten Laser und dem damit verbundenen Bindungsbruch im Hairpin-Strang durch Zweiphotonen-Effekte wurde es dem fluoreszierenden Strang des DNA-Duplex ermöglicht, sich vom Quencher-Strang zu lösen und an den fixierten Strang zu hybridisieren. Das Photolyse-Ereignis konnte so in ein lokales Fluoreszenzsignal übersetzt und detektiert werden.
Der eindeutige Beweis, dass es sich tatsächlich um ein Zweiphotonen-induziertes Ereignis handelt, konnte durch die dreidimensional aufgelöste Photolyse und über die quadratische Anhängigkeit des Fluoreszenzsignals von der eingestrahlten Laserleistung erbracht werden.
Die generelle Kompatibilität des Cumarin-Linkers mit biologischen Systemen konnte in Zellkulturexperimenten gezeigt werden. Dazu wurde eine Transkriptionsfaktor-DNA Decoy-Strategie entwickelt, in der Linker-modifizierte DNA Decoys an regulatorische Transkriptionsfaktoren binden und diese aber auch photochemisch wieder freisetzen können („catch and release-Strategie“). Zellkulturexperimente, um mit dieser Methode das Transkriptionsfaktor-gesteuerte und endogene Gen für Cyclooxygenase-2 (COX2) zu regulieren, lieferten keine aussagekräftigen Ergebnisse. Daher wurden die verwendeten Zellen dahingehend manipuliert, sodass sie das Protein GFP (grün fluoreszierendes Protein) in Abhängigkeit von der Anwesenheit eines Transkriptionsfaktors exprimieren. Das so durch die Zellen verursachte Fluoreszenzsignal steht in direkter Abhängigkeit zur Decoy-Aktivität. Mit Hilfe modifizierter GFP-Decoys konnte hierbei eine Regulation auf Transkriptionsebene in biologischen Organismen erreicht werden. Mit dem Electrophoretic Mobility Shift Assay (EMSA), einer molekularbiologischen in vitro-Analysetechnik, wurden die Interaktionen zwischen modifizierten Decoys und dem Transkriptionsfaktor untersucht.
...
In dieser Arbeit werden die Ergebnisse quantenchemischer Untersuchungen von verschiedenen Siliciumverbindungsklassen vorgestellt, die in weiten Teilen als Begleitung zu experimentellen Arbeiten durchgeführt wurden. Das erste Hauptkapitel befasst sich mit den Chloridkomplexen von Perchlorsilanen, zu denen die inversen Sandwichkomplexe und die Silafullerane mit endohedralem Gast gehören. Der Fokus liegt dabei auf den Bindungseigenschaften zwischen Ligand und Silan. Weiterhin werden thermodynamische Untersuchungen zu Aufbaureaktionen und Eigenschaften der Verbindungen vorgestellt. Mit den durchgeführten Rechnungen kann gezeigt werden, dass durch Wahl geeigneter Substituenten am Siliciumatom ein Wechsel in den Chloridkomplexen von einem hyperkoordinierten Siliciumatom hin zu einem Siliciumatom mit ausgebildeter Tetrelbindung erreicht werden kann. Bei den inversen Sandwichkomplexen sind beide Bindungsmodi möglich, von denen die Tetrelbindung die stärkere darstellt. Neben Chloridionen können hier auch Nitrile und Chlorsubstituenten am eigenen Silangerüst als Liganden fungieren. Die stärksten Tetrelbindungen können bei den endohedral funktionalisierten Silafullerankomplexen gefunden werden. Hier stellt das experimentell isolierte Strukturmotiv mit zwölf äußeren Trichlorsilylsubstituenten das thermodynamisch stabilste Substitutionsmuster dar. Im folgenden Kapitel werden die generellen physikalischen Ursachen für die beobachteten thermodynamischen Trends zwischen Perchlorsilanisomeren sowie Disproportionierungsreaktionen behandelt und ein direkter Vergleich mit Alkanhomologen angestellt. Bei den Perchlorsilanen und den meisten Homologen ist bei den untersuchten Systemen eine energetische Präferenz von verzweigteren Strukturen zu erkennen. Die Ursache hierfür liegt hauptsächlich bei stärkeren attraktiven Wechselwirkungen durch Korrelationseffekte, Hyperkonjugation sowie elektrostatische Effekte, welche stärkere repulsive Wechselwirkungen wie die Pauli-Repulsion überkompensieren. Im letzten Kapitel kommen zu den bisher behandelten Reaktionen unter Si-Cl- und Si-Si-Bindungsbeteiligung noch Reaktionen unter Si-C-Bindungsbeteiligungen hinzu. Dort werden die auch wegen ihrer Elektronentransporteigenschaften interessanten Silacyclopentadiene (Silole) hinsichtlich ihrer Isomerisierung, Dimerisierung und weiteren pericyclischen Reaktivität untersucht. Gegenüber dem verwandten Cyclopentadien zeigen diese eine deutlich erhöhte Reaktivität, was zu verschiedenen Dimerisierungsreaktionen führt, solange keine Abfangreagenzien im Überschuss zugegen sind.
Im Rahmen dieser Arbeit sollte der tonische BZR-Signalweg im Burkitt Lymphom näher untersucht werden. Ziel war die Identifizierung von Zielstrukturen, die für die Zellen essentiell für die Aufrechterhaltung des tonischen Signalwegs sind und gleichzeitig die Viabilität der Zellen fördern. Durch die Identifizierung noch unbekannter Zielstrukturen wäre man in der Lage, neue Behandlungsstrategien zu entwickeln oder bereits bestehende zu optimieren. Des Weiteren sollte die Signaltransduktion in der B-ALL, die über einen Vorläufer des BZRs, dem prä-BZR vermittelt wird, hinsichtlich eines tonischen Überlebenssignals untersucht werden.
Durch massenspektrometrische Analysen der tonischen BZR-Signaltransduktion im Burkitt Lymphom, die für die Viabilität der Zellen essentiell ist und die Ergebnisse eines Inhibitorscreens konnte HSP90 als potenzielle neue Zielstruktur im Burkitt Lymphom identifiziert werden.
So konnte gezeigt werden, dass Burkitt-Lymphom-Zellen nach Inhibition der Chaperonfunktion von HSP90 durch zwei auf dem Markt bereits verfügbare Inhibitoren einen Zellzyklusarrest erfahren, der letztlich zur Apoptose der Zellen führt. Dieser Effekt wurde auf einen Verlust des (tonischen) BZR-Signals zurückgeführt, der überwiegend durch den aktiven lysosomalen Abbau von SYK nach HSP90-Inhibition zustande kommt. Demnach führte die Überexpression einer HSP90-resistenten Variante von SYK (TEL-SYK) zu einer Aufhebung der apoptotischen Effekte nach HSP90-Inhibition. Zudem wurde SYK als Interaktionspartner von HSP90 (HSP90-Klientprotein) im Burkitt Lymphom und die für die Interaktion essentielle Phosphorylierungsstelle (pY197 in HSP90α bzw. pY192 in HSP90β) identifiziert bzw. validiert.
Das therapeutische Potenzial der HSP90-Inhibitoren im Burkitt Lymphom offenbarte sich ferner durch den Vergleich der Wirkungseffektivität in gesunden B-Zellen mit der in Tumorzellen. So zeigten HSP90-Inhibitoren eine erhöhte Affinität zu Tumorzellen. Bei verwendeten Konzentrationen der Inhibitoren, die bereits eine apoptotische Wirkung in Tumorzellen hervorriefen, waren gesunde B-Zellen resistent.
In der B-ALL konnte durch den Knockdown von CD79a und der Inhibition von SYK eine tonische Antigenrezeptor-Signalleitung identifiziert werden, die wie im Burkitt Lymphom über den PI3K/AKT-Signalweg vermittelt wird. Durch die Kombination der im Rahmen dieser Arbeit gewonnen Erkenntnisse und weiterführende Analysen (wie zum Beispiel durch Inhibitor- oder CRISPR/Cas-Screens) kann so eine Identifizierung von potenziellen Zielstrukturen mit therapeutischem Nutzen in der B-ALL erfolgen.
Während hohe Spiegel von reaktiven Sauerstoffspezies (reactive oxygen species, ROS) in Form von oxidativem Stress schädliche Auswirkungen auf den Körper haben können, zeigen aktuelle Forschungsarbeiten, dass Redox-Modifikationen an Thiolresten von Proteinen reversible Signalprozesse steuern können. Dieses Prinzip der posttranslationalen Proteinmodifikation durch Redox-Signale scheint auch bei der Verarbeitung und Chronifizierung von Schmerzen von Bedeutung zu sein. Über die potenziellen Redox-modulierten Zielstrukturen im nozizeptiven System ist jedoch bisher nur wenig bekannt.
Ein potentielles Redoxtarget im nozizeptiven System ist das kleine EF-Hand Ca2+-bindende Protein S100A4. Wie die anderen Familienmitglieder der S100-Proteinfamilie enthält S100A4 Cysteinreste, die in der Lage sind, redoxabhängig modifiziert zu werden. Studien an menschlichen Biopsien nach Gehirnverletzungen und an Mäusen in Verletzungsmodellen konnten zeigen, dass S100A4 neuroprotektiv wirkt. Darüber hinaus kann S100A4 sezerniert werden und vermittelt extrazellulär insbesondere regulatorische Funktionen innerhalb der Angiogenese, bei der Zellmigration sowie bei zellulären Differenzierungsprozessen. Die Funktionen von S100A4 im nozizeptiven System sind jedoch weitgehend unbekannt. In Vorarbeiten zu diesem Projekt wurde in einem Proteom-Screen beobachtet, dass S100A4 nach einer peripheren Nervenverletzung redoxabhängig im verletzten Nervengewebe hochreguliert wird. Darauf basierend wurde im Rahmen dieser Arbeit die Lokalisation von S100A4 innerhalb des nozizeptiven Systems sowie die funktionelle Bedeutung nach peripherer Nervenverletzung genauer untersucht.
Anhand von Immunfluoreszenzaufnahmen konnte gezeigt werden, dass S100A4 basal in Subpopulationen Peripherin- und NF200-positiver sensorischer Neurone lokalisiert ist. Interessanterweise führt eine Nervenverletzung nicht nur zu einer deutlichen Steigerung der S100A4-Expression im Bereich der Verletzungsstelle, sondern auch zu einer Änderung des neuronalen Verteilungsmusters. Die funktionelle Bedeutung von S100A4 für die Verarbeitung von Schmerzen wurde anhand von Verhaltenstests an Mäusen näher charakterisiert. Dafür wurden gewebsspezifische S100A4 Knockout Mäuse (Adv-S100A4-/-) und globale S100A4 Knockout Mäuse (S100A4-/-) generiert. In Modellen der akuten Nozizeption zeigten sowohl Adv-S100A4-/- als auch S100A4-/- Mäuse eine normale Reaktion auf thermische und mechanische Stimuli. Im „Spared Nerve Injury“ (SNI) Modell für periphere Neuropathien zeigten die S100A4-/- Mäuse eine im Vergleich zu wildtypischen (WT) Mäusen signifikant reduzierte mechanische Hyperalgesie, während bei den gewebsspezifischen Adv-S100A4-/- Mäusen kein verändertes Schmerzverhalten beobachtet werden konnte. Im „Crush Injury“ Modell für periphere Neuropathien war die mechanische Hyperalgesie der S100A4-/- Mäuse im Vergleich zu WT Tieren jedoch nicht verändert. Zusätzlich zur mechanischen Hyperalgesie wurden auch weitere Methoden der Quantifizierung des Schmerzverhaltens (Sciatic Functional Index, Brush Test und Wühlverhalten) etabliert. Allerdings war auch hier das Verhalten der S100A4-/- Mäuse mit dem der WT Mäuse vergleichbar. Darüber hinaus war das durch Applikation eines ROS-Donors induzierte nozizeptive Verhalten von S100A4-/- und WT Mäusen ähnlich. Man kann daher schlussfolgern, dass nach einer peripheren Nervenverletzung die S100A4-Expression insbesondere im Bereich der Verletzungsstelle hochreguliert wird. Dem gegenüber scheint S100A4 jedoch für die Schmerzverarbeitung funktionell nur von untergeordneter Bedeutung zu sein.
Ein weiteres potentielles Redoxtarget im nozizeptiven System ist die lösliche Epoxidhydrolase (soluble epoxide hydrolase, sEH). Die funktionelle Bedeutung von sEH für die Schmerzverarbeitung wurde bereits in früheren Studien belegt, da eine Behandlung mit sEH-Inhibitoren bei Ratten zu einer reduzierten Hypersensitivität in inflammatorischen und neuropathischen Schmerzmodellen führte. Während die analgetische Wirkung von sEH-Inhibitoren bereits gut bekannt ist, wurde eine redoxabhängige Modulation der sEH-Aktivität im nozizeptiven System in bisherigen Forschungsarbeiten kaum untersucht. Bestimmte Elektrophile können die sEH inhibieren, indem sie an das redoxaktive Cystein an Position 521 der sEH binden. Forschungsarbeiten konnten in diesem Zusammenhang bereits zeigen, dass die Cys521-vermittelte Inhibition von sEH durch das Prostaglandin 15d-PGJ2 oder 9-/10-Nitrooleonsäure (NO2-OA) im kardiovaskulären System zu einer Dilatation der Koronargefäße und einer Reduktion des Blutdrucks führt. Im Rahmen dieser Arbeit wurde untersucht, ob es durch eine redoxabhängige Hemmung der sEH-Funktion auch innerhalb des nozizeptiven Systems zu einer veränderten Schmerzreaktion bei Mäusen kommt. Um diese Fragestellung beantworten zu können, wurden sEH-Knockin (sEH-KI) Mäuse verwendet, deren redox-sensitives Cystein 521 durch ein Serin ersetzt wurde. Bei diesen Knockin-Mäusen können Elektrophile wie 15d-PGJ2 oder 9-/10-NO2-OA keine Enzyminhibition erzeugen. Die Charakterisierung der sEH-KI Mäuse zeigte sowohl in akuten als auch inflammatorischen Schmerzmodellen (Formalin Test und Zymosan-Pfotenentzündungsmodell) keinen Zusammenhang der Redoxmodifikation mit dem Schmerzverhalten der Mäuse. Auch in neuropathischen und viszeralen Schmerzmodellen (SNI-Modell und Modell der Zymosan-induzierten Peritonitis) konnte kein verändertes Schmerzverhalten der sEH-KI-Mäuse im Vergleich zu Kontrolltieren beobachtet werden. Darüber hinaus war das nozizpetive Verhalten nach Applikation von 15d-PGJ2 bei sEH-KI und WT Mäusen vergleichbar. Die redoxabhängige Modulation der sEH an Cystein 521 scheint demnach, im Gegensatz zum kardiovaskulären System, im nozizeptiven System keine Rolle zu spielen.
Verschiedene physikalische Effekte erlauben es Licht so zu führen und zu verändern, dass es Einblicke in für Menschen sonst unzugängliche Bereiche gewährt. Eines von insgesamt drei Elementen dieser Dissertationsschrift ist der Aufbau eines Multiphotonen-Mikroskops. Dieses fortschrittliche Werkzeug erweitert das zur Verfügung stehende Instrumentarium um verschiedene Analysemethoden, allen voran die 2-Photonen-Fluoreszenz-Mikroskopie. Durch geringfügige Modifikationen können auch weitere Methoden, wie beispielsweise stimulierte Raman-Streuung realisiert werden.
Insbesondere die 2-Photonen-Fluoreszenz-Mikroskopie war für das zweite Element dieser Dissertationsschrift von großer Bedeutung. In dieser Studie wurde das Bleichverhalten von Spinach bei 2-Photonen-Absorption untersucht, sowohl an frei in Lösung befindlichen als auch auf einem Träger immobilisierten Spinach-Komplexen. Die Ergebnisse zu den frei in Lösung befindlichen Spinach-Komplexen zeigen, dass die Verstärkung der Fluoreszenz von DFHBI grundsätzlich auch im Fall der 2-Photonen-Absorption eintritt. Dabei wurde ein Ausbleichen der 2-Photonen-induzierten Fluoreszenz für frei in Lösung befindliche Spinach-Komplexe erst bei außerordentlich hohen Intensitäten der Anregungsstrahlung beobachtet. Dieser Befund kann zumindest teilweise auf das Eindiffundieren fluoreszenter Spinach-Komplexe in das sehr kleine Fokalvolumen innerhalb der 2-Photonen-Anregung stattfindet zurückgeführt werden. Für immobilisierte Spinach-Komplexe konnte gezeigt werden, dass eine kontinuierliche Bildaufnahme gegenüber einer Bildaufnahme in Intervallen mit jeweils zusätzlichen Dunkelphasen zur Erholung des reversiblen Bleichens der 2-Photonen-induzierten Fluoreszenz, sowie der generelle Verzicht auf spezielle Belichtungsschemata und Methoden der Datenakquise mit keinen besonderen Nachteilen verbunden ist. Abschließend betrachtet erweist sich Spinach bei 2-Photonen-Anregung als ausgesprochen resistent gegenüber einem irreversiblem Ausbleichen des Fluoreszenzsignals.
Als drittes Element dieser Dissertationsschrift wurde die Dynamik von Chrimson, einem Kanalrhodopsin mit rot-verschobener Absorption mittels zeitaufgelöster Spektroskopie im sichtbaren Spektralbereich untersucht. Sowohl die Anregungswellenlänge als auch der pH-Wert bzw. der Protonierungszustand des Gegenions haben einen messbaren Einfluss auf die Primärreaktion. Diese verlangsamt sich, sobald der pH-Wert abgesenkt oder die Anregungswellenlänge rot-verschoben wird. Darüber hinaus führt eine Rot-Verschiebung der Anregungswellenlänge zu einer geringeren Effizienz der Isomerisation des Retinal-Chromophors. Die Primärreaktion von Chrimson entspricht dabei einem Reaktionsmodell mit einer Verzweigung des Reaktionspfades auf der Energiehyperfläche des angeregten Zustandes. Ein Reaktionspfad führt dabei durch ein lokales Minimum, welches in seiner Ausprägung stark von der elektrostatischen Umgebung des Retinal-Chromophors abhängt. Je nach ursprünglichem Protonierungszustand des Gegenions der Retinal-Schiff-Base wurden große Unterschiede hinsichtlich der beobachteten transienten Absorptionsmuster für den im Anschluss von Chrimson durchlaufenen Photozyklus gefunden. Bei pH 6,0 weist der Photozyklus von Chrimson eine insgesamt deutlich schnellere Kinetik auf, als es für den Photozyklus bei pH 9,5 beobachtet wurde. Es ist bemerkenswert, dass in elektrophysiologischen Messungen für beide Photozyklen eine Öffnung des Ionenkanals gefunden wurde. Die Kanalfunktion von Chrimson ist somit grundsätzlich nicht vom Protonierungszustand des Gegenions abhängig, wenngleich die Kinetik des Ionenkanals durchaus davon beeinflusst wird. Dies deutet auf Unterschiede in den Wechselwirkungen zwischen dem Ionenkanal und dem Gegenion der Retinal-Schiff-Base hin.
Im Rahmen dieser Arbeit wurde die schnelle Energietransfer- (EET) und Elektronentransfer (ET)-Dynamik unterschiedlichster Quantenpunkte (QD) spektroskopisch untersucht. Die untersuchten Systeme bestanden in den meisten Fällen aus Donor-Akzeptor-Paaren, bei denen die Halbleiternanokristalle als Donor fungierten. Der Fokus lag dabei auf der gezielten Anpassung des Donors, um die optimale Funktionalität zu erreichen. Die Untersuchung der Nanokristalle erstreckte sich daher von einfachen Kernen über verschiedene Kern-Schale-Partikel bis hin zu völlig anderen Strukturen wie Nanoplatelets (NPL). Als Akzeptor wurden eine Vielzahl von Molekülen verwendet, die sich als Elektronen- und/oder Energieakzeptoren für die verschiedenen QDs eignen.
Die CXCR4-CXCL12-Signalachse gilt als eines der bislang am besten studierten Signalsysteme in der Hämatopoese. Allerdings stammt unser Wissen über diesen kritischen Signalweg maßgeblich aus subtraktiven Studien, wie z.B. knock-out Modellen oder pharmakologischer Inaktivierung. Zwar können aus diesen Modellen wichtige Erkenntnisse über die physiologische Rolle dieses Signalwegs abgeleitet werden, aber dennoch bleiben einige Phänomene ungeklärt. So konnte gezeigt werden, dass es sowohl bei CXCR4-Defizienz als auch bei Patienten mit dem WHIM-Syndrom (ausgelöst durch eine überaktive CXCR4-Mutante) zu einer ausgeprägten B-Zellaplasie kommt. Dies scheint intuitiv nicht vereinbar. Daher wurde in der vorliegenden Arbeit ein Modell mit einer überaktiven CXCR4- Mutante (CXCR41013/1013) hinsichtlich der (un)reifen Hämatopoese systematisch untersucht.
Zunächst wurden hämatopoetische Stamm- und Vorläuferzellen (HSPC) hinsichtlich der aberranten CXCR4-Signalweiterleitung ex vivo analysiert. Die CXCR4-Überaktivierung konnte sowohl in frühen Effekten nach Aktivierung des Rezeptors (F-Aktinpolymerisierung, Aktivierung des MAPK- Signalweges), als auch in späten, zellfunktionellen Effekten (Migrationsassay) nachgewiesen werden. Die veränderte CXCR4 Signalintegration hatte auch bereits in der Homöostase organismische Konsequenzen im Mausmodell. So konnte eine massiv vergrößerte HSPC-Population in der Milz von CXCR41013/1013-Tieren detektiert werden, im Sinne einer extramedullären Hämatopoese. Knochenmarks-HSPC aus CXCR41013/1013-Tiere zeigten ein massiv eingeschränktes (serielles) Repopulationspotenzial. Kombiniert mit der oben genannten ausgeprägten extramedullären Hämatopoese in diesen Tiere interpretieren wir diese Beobachtung als starken Hinweis auf eine dysfunktionelle Interaktion der Stammzellen mit der hämatopoetischen Stammzellnische im Knochenmark. In diesem Zusammenhang besonders interessant ist die Tatsache, dass auch ein Kompetitorknochenmark das Überleben einer Sekundärtransplantation nicht sichert. Dabei ist zu diskutieren, ob dieser Effekt durch eine effizientere Besetzung von Stammzellnischen durch CXCR41013/1013-Zellen, eine Akkumulation von CXCL12 in der Knochenmarkflüssigkeit (siehe unten) oder eventuell sogar ein vesikelabhänginger Transport von mutiertem CXCR4 in Kompetitorzellen ausgelöst wird. Ein weiteres Merkmal dieser Dysfunktion könnte ebenfalls die gezeigte Akkumulation von CXCL12 in der Knochenmarkflüssigkeit von CXCR41013/1013-Tiere darstellen. Diese Akkumulation könnte die Suppression co-transplantierter wildtypischer Hämatopoese sowie die verminderte Effizienz der G-CSF-induzierten Stammzellmobilisierung funktionell erklären. Zusätzlich konnte gezeigt werden, dass die Mobilisierung von Stammzellen aus dem Knochenmark durch einen CXCR4- Inhibitor in CXCR41013/1013-Tieren ebenfalls erheblich hinter der in Wildtypmäusen zurückbleibt.
Analog zu Patienten mit WHIM-Syndrom zeichnen sich CXCR41013/1013-Mäuse weiterhin durch eine ausgeprägte Leukopenie, insbesondere durch einen schweren B-Zell-Mangel, aus. Aus diesem Grund wurde die B-Lymphopoese und humorale Immunfunktion genauer analysiert. Eine grundsätzliche humorale Immunkompetenz von CXCR41013/1013-Tieren konnte nachgewiesen werden, jedoch ist die B-Memory-Funktion erheblich eingeschränkt. Durchflusszytometrisch und funktionell konnte eine reduzierte preB/pro-B Population im Knochenmark bei einer gleichzeitig vergrößerten preB/pro-B Population in der Milz (vgl. extramedulläre Hämatopoese) nachgewiesen werden. Ebenfalls konnten wir in dieser Zellpopulation eine stark erhöhte CXCR4-Oberflächenexpression im Vergleich zu wildtypischen Zellen nachweisen. Da diese unreifen B-Zellen keine verstärke Apoptoserate aufweisen, gehen wir derzeit davon aus, dass der Differenzierungsstopp nicht durch selektiven Zelltod, sondern durch aberrante Retention der preB/proB-Zellen in einer primitiven B-Vorläufer- Nische im Knochenmark zustande kommt, beziehungsweise durch eine gestörte Migration in differenzierende Nischen im Knochenmark. Alternativ könnte die Überdosis CXCR4-Signal differenzierenden Signalen entgegenstehen. Beide Hypothesen können das eingangs erwähnte Paradoxon bezüglich einer B-Zellaplasie in CXCR4-defizienten und CXCR4-überaktiven Zellen hinreichend erklären.
Im Rahmen dieser kumulativen Dissertation konnte eine Methode mitentwickelt werden, die die Bestimmung der absoluten Konfiguration pharmazeutischer Verbindungen aus Röntgenpulverbeugungsdaten ermöglicht. Die Methode basiert auf der Bildung von Salzen. Die notwendige Herstellung dieser Salze mit Salzbildnern bekannter Konfiguration wurde hinsichtlich einer minimalen Ansatzgröße optimiert und erlaubt ein Arbeiten mit Mengen von unter zehn Mikrogramm. Die Kristallisation konnte sogar direkt in den Kapillaren für die Aufnahme der Pulverdiagramme durchgeführt werden. Die absolute Konfiguration einiger als Testfälle gewählter pharmazeutischer Wirkstoffe konnte auf diese Art erfolgreich bestimmt werden. Dies stellt eine erfolgreiche Erweiterung bisher verfügbarer Methoden dar.
1,1,3,3-Tetraethyl-5-nitroisoindolin (TENI) und 1,1,3,3-Tetraethyl-5-nitroisoindolin-2-oxyl (TENO) sind Zwischenstufen in der Synthese von RNS-Spinlabeln für die EPR-Spektroskopie. Die Kristallstrukturen beider Verbindungen konnten aus Einkristallbeugungsdaten bestimmt werden. TENI hat einen Schmelzpunkt nahe der Raumtemperatur. TENO hat dagegen einen wesentlich höheren Schmelzpunkt, obwohl das Molekül nur ein Sauerstoffatom zusätzlich hat. Die Kristallstruktur liefert die Erklärung für dieses Phänomen: In der Kristallstruktur von TENI findet sich als stärkste intermolekulare Wechselwirkung eine einzelne schwache, sehr lange Wasserstoffbrückenbindung.
6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminiumsulfat, ein Edukt der Synthese von Leukopterin konnte als Hydrat erhalten werden. Die Kristallstruktur dieses Monohydrats konnte problemlos bestimmt werden, ebenso wie die von synthetisiertem 4-Amino-2,6-dimethylpyrimidin.
Natriumethanolat wurde nach einer 180 Jahre alten Vorschrift von Liebig synthetisiert. Wie die Röntgenpulverdiagramme zeigen, bilden sich dabei jedoch Gemische von verschiedenen Phasen. Die Kristallstruktur von reinem NaOEt konnte aus Pulverdaten bestimmt werden. Ebenfalls wurden ein Diethanolsolvat sowie zwei weitere Phasen identifiziert. Vom Diethanolsolvat NaOEt · 2 HOEt konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Die Kristallstrukturen von Natrium-n-propanolat (NaOnPr), Natrium-n-butanolat (NaOnBu) und Natrium-n-amylat (NaOnAm) konnten ebenfalls aus Pulverdaten aufgeklärt werden. Sie weisen ein ähnliches Na-O-Gitter wie Natriumethanolat auf, allerdings kristallisieren sie in der Raumgruppe P 4/n m m. Die abweichende Raumgruppe des NaOEt (P -4 21 m) liegt am sterischen Anspruch der Ethylgruppe. Die längeren Alkylgruppen sind hochgradig fehlgeordnet und somit im Mittel zylinderförmig. Die Ethylgruppe dagegen hat einen weniger symmetrischen Raumbedarf. Die Solvate der Alkalialkoholate wurden mit zunehmender Länge der Alkylketten instabiler. Nichtsdestotrotz konnten drei verschiedene Solvate hergestellt werden: NaOnPr · 2 HOnPr, NaOiPr · 5 HOiPr und NaOtAm · HOtAm. Ihre Kristallstrukturen konnten aus Einkristallbeugungsdaten bestimmt werden. In diesen Strukturen zeigen sich sehr unterschiedliche Strukturmotive, die teilweise die mögliche Existenz weiterer Solvatstufen andeuten.
Die industriellen Rotpigmente Pigment Red 52 und Pigment Red 48 wurden im Labor unter verschiedenen Bedingungen synthetisiert. Dabei wurden neben den kommerziell verfügbaren Phasen einige neue Phasen identifiziert. Erstmals konnten Kristallstrukturen von P.R.52 und P.R.48 bestimmt werden. Von Pigment Red 52 konnte ein bisher unbekanntes Mononatriumsalz hergestellt werden. Von diesem Salz konnte ein DMSO-Solvat-Monohydrat kristallisiert werden. Aus erhaltenen Einkristallen konnte die Struktur bestimmt werden. Von Pigment Red 48 konnte ebenfalls ein bisher nicht literaturbekanntes Mononatriumsalz isoliert werden. Von zwei Hydratstufen dieser Verbindung konnten Einkristalle hergestellt und ihre Kristallstrukturen bestimmt werden. Eine weitere Phase wurde als Anhydrat identifiziert. Vom Di-Natriumsalz des P.R.52 sowie von seinem Calciumsalz wurden insgesamt fünf verschiedene Hydratstufen gefunden. Die Kristallstrukturen dieser Hydrate konnten aus Röntgenpulverbeugungsdaten bestimmt werden. Von einer Hydratstufe konnte ebenfalls ein Einkristall erhalten und die Struktur bestätigt werden. Eine Veröffentlichung ist in Vorbereitung.
Die Isomere des Orangepigments Perinon werden nach gemeinsamer Synthese industriell durch Überführung in „Trennsalze“ getrennt. Weder die Molekülkonstitution der Trennsalz-Ionen, noch die chemische Zusammensetzung der Feststoffe, noch deren Kristallstrukturen waren bisher bekannt. Die industrielle Form des „trans-Trennsalzes“ konnte im Labor hergestellt werden. Eine weitere Phase des trans-Perinontrennsalzes konnte hergestellt und identifiziert werden. Durch die nachfolgende Einkristallstrukturanalyse zeigte sich, dass die Trennsalze eine völlig andere Molekülkonstitution haben, als in der Literatur beschrieben war: Statt eines planaren Perinongerüsts enthält das Trennsalz ein verdrehtes Bis(benzimidazolat)naphthalindicarboxylat-tetraanion, dessen Ladung durch Kalium-Kationen kompensiert wird. Das bisher nie als Feststoff beschriebene cis-Perinontrennsalz wurde hergestellt und kristallisiert. Es konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Alle Perinontrennsalze enthalten im Kristallgitter eine beträchtliche Anzahl Wasser- und Ethanolmoleküle. Durch Festkörper-NMR-Spektroskopie konnte gezeigt werden, dass das Wasser-Ethanol-Netzwerk stark dynamisch ist. Bei der Hydrolyse der Trennsalze entstehen wieder die ursprünglichen, wasser- und lösungsmittelfreien Perinonpigmente.