Refine
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- EEG (4)
- MRI (3)
- Aging (2)
- MCI (2)
- aging (2)
- alpha power (2)
- white matter hyperintensity (2)
- Alpha power (1)
- Aperiodic (1)
- Cognition (1)
Institute
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2021)
Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N = 907, 60–80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and long-range temporal correlations. Finally, higher age was associated with elevated alpha power via total WMH volume. We suggest that an elevated alpha power is a consequence of WMHs affecting a spatial organization of alpha sources.
AKTIVA-MCI is a program for patients with mild cognitive impairment (MCI) that aims to enhance participation in cognitively stimulating leisure activities. Participation in cognitively stimulating activities seems to be a potential strategy for people with MCI delaying cognitive decline for a while. In total, 35 MCI patients were enrolled in the pilot study of whom 29 completed the whole program (16 female, 71.1±7.5 years; Mini Mental Status Examination score: 28±2.2). Daily activity protocols were used to measure the frequency of participation in cognitively stimulating activities during the program (12 sessions). Additional standardized psychometric tests and questionnaires were used to assess cognition, mood, and subjective memory decline. Analyses of the daily activity protocols showed that during the intervention participants increased the frequency of several cognitively stimulating leisure activities. Comparison of pre-post data indicates no changes in cognitive status, mood, and subjective memory decline. These findings indicate that the program is suitable for patients with MCI.
In healthy older adults, resveratrol supplementation has been shown to improve long-term glucose control, resting-state functional connectivity (RSFC) of the hippocampus, and memory function. Here, we aimed to investigate if these beneficial effects extend to individuals at high-risk for dementia, i.e., patients with mild cognitive impairment (MCI). In a randomized, double-blind interventional study, 40 well-characterized patients with MCI (21 females; 50–80 years) completed 26 weeks of resveratrol (200 mg/d; n = 18) or placebo (1,015 mg/d olive oil; n = 22) intake. Serum levels of glucose, glycated hemoglobin A1c and insulin were determined before and after intervention. Moreover, cerebral magnetic resonance imaging (MRI) (3T) (n = 14 vs. 16) was conducted to analyze hippocampus volume, microstructure and RSFC, and neuropsychological testing was conducted to assess learning and memory (primary endpoint) at both time points. In comparison to the control group, resveratrol supplementation resulted in lower glycated hemoglobin A1c concentration with a moderate effect size (ANOVARM p = 0.059, Cohen's d = 0.66), higher RSFC between right anterior hippocampus and right angular cortex (p < 0.001), and led to a moderate preservation of left anterior hippocampus volume (ANOVARM p = 0.061, Cohen's d = 0.68). No significant differences in memory performance emerged between groups. This proof-of-concept study indicates for the first-time that resveratrol intake may reduce glycated hemoglobin A1c, preserves hippocampus volume, and improves hippocampus RSFC in at-risk patients for dementia. Larger trials with longer intervention time should now determine if these benefits can be validated and extended to cognitive function.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2020)
White matter hyperintensities (WMHs) in the cerebral white matter and attenuation of alpha oscillations (AO; 7–13 Hz) occur with the advancing age. However, a crucial question remains, whether changes in AO relate to aging per se or they rather reflect the impact of age-related neuropathology like WMHs. In this study, using a large cohort (N=907) of elderly participants (60-80 years), we assessed relative alpha power (AP), individual alpha peak frequency (IAPF) and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. In contrast, we observed no significant relation of probability of WMH occurrence with IAPF and LRTC. We argue that the WMH-associated increase of AP reflects generalized and likely compensatory changes of AO leading to a larger number of synchronously recruited neurons.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2020)
Objective: To investigate whether regional white matter hyperintensities (WMHs) relate to alpha oscillations (AO) in a large population-based sample of elderly individuals.
Methods: We associated voxel-wise WMHs from high-resolution 3-Tesla MRI with neuronal alpha oscillations (AO) from resting-state multichannel EEG at sensor (N=907) and source space (N=855) in older participants of the LIFE-Adult study (60–80 years). In EEG, we computed relative alpha power (AP), individual alpha peak frequency (IAPF), as well as long-range temporal correlations (LRTC) that represent dynamic properties of the signal. We implemented whole-brain voxel-wise regression models to identify regions where parameters of AO were linked to probability of WMH occurrence. We further used mediation analyses to examine whether WMH volume mediated the relationship between age and AO.
Results: Higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. The age-related increase of relative AP in the right temporal brain region was shown to be mediated by total WMH volume.
Conclusion: A high relative AP corresponding to increased regional WMHs was not associated with age per se, in fact, this relationship was mediated by WMHs. We argue that the WMH-associated increase of AP reflects a generalized and likely compensatory spread of AO leading to a larger number of synchronously recruited neurons. Our findings thus suggest that longitudinal EEG recordings might be sensitive to detect functional changes due to WMHs.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2021)
Aging is associated with increased white matter hyperintensities (WMHs) and with the alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and LRTC. Finally, higher age was associated with elevated alpha power via total WMH volume. Although an increase in alpha oscillations due to WMH can have a compensatory nature, we rather suggest that an elevated alpha power is a consequence of WMH affecting a spatial organization of alpha sources.
Highlights
• A big dataset reveals age-related alterations in EEG biomarkers and cognition.
• Prominent decline of individual alpha peak frequency primarily in temporal lobes.
• A positive association between individual alpha peak frequency and working memory.
• Absence of age-related alpha power decline when controlling for 1/f decay of the PSD.
• Alpha power is negatively associated with the speed of processing in elderly sample.
Abstract
While many structural and biochemical changes in the brain have previously been associated with older age, findings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors determining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic and non-rhythmic parameters. We used a large dataset (N = 1703, mean age 70) to comprehensively investigate age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and their individual contributions to cognitive performance. While we found strong evidence for an individual alpha peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interference resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional role in information sampling. Critically, we did not detect a significant relationship between alpha power and age when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the comprehensive assessment of association between age, neuronal activity, and cognitive performance.