Die Einwirkung von UV-Strahlen (254 mµ) auf Bakterien und auf DNS führt zur Bildung einer Reihe von Photoprodukten. Thymin bildet ein Thymin-Dimeres und mindestens zwei weitere Photoprodukte. Aus Cytosin entstehen Uracil und ebenfalls mindestens zwei weitere Photoprodukte. Das Thymin-Dimere läßt sich durch Bestrahlung mit UV-Licht in wäßriger Lösung zu 87% wieder in Thymin zurückverwandeln. Bei den übrigen Photoprodukten gelingt diese Reaktion nicht.
Die durch UV-Strahlen verursachten biologischen Schäden in der Bakterienzelle dürften weitgehend auf die Bildung von dimerem Thymin zurückzuführen sein. Demgegenüber sind die übrigen Photoprodukte, die erst bei höherer UV-Dosis auftreten, nur von untergeordneter biologischer Bedeutung.
Die von der Strahlendosis abhängige Bildung der Thymin-Photoprodukte in Zellen von E. coli wurde quantitativ untersucht.
Eine Denaturierung der nativen DNS durch Erhitzen oder durch Abspalten der Purine zur Apurinsäure hat zur Folge, daß die Bildung des Thymin-Dimeren und eines der übrigen Thymin-Photoprodukte besonders stark begünstigt wird.
Bei saurer Hydrolyse wird aus den 5-Halogenuracildesoxyribosiden die DR ** etwa 3 -4-mal rascher abgespalten als aus TdR oder UdR. CdR wird unter den gleichen Bedingungen 16-fach schneller hydrolysiert. Im Gegensatz dazu ist die Ribose im Cytidin um ein Mehrfaches fester gebunden als im Uridin. Im TdR-Dimeren wird durch die Absättigung der 5.6-Doppelbindung die Stabilität der N-glykosidischen Bindung stark erniedrigt. Aus diesen Befunden ergibt sich ein Hinweis auf die Elektronendichte-Verteilung im Pyrimidinring und damit eine chemische Basis für das mutagene Verhalten verschiedener unnatürlicher Desoxyriboside.
Es wurden mehrere unkonjugierte 2.4-Diaminopteridine erstmals synthetisiert. Die Wachstumshemmung verschiedener Mikroorganismen durch 2.4-Diamino-6-[1.2-dihydroxypropyl-(ʟ-erythro)] pteridin (Aminobiopterin) und anderer unkonjugierter 2.4-Diamino-pteridine läßt sich nur mit Folsäure oder Thymin, nicht dagegen mit Biopterin aufheben.
Induction of the enzyme Δ5-3-ketosteroid isomerase in Pseudomonas testosteroni was found to be strongly inhibited by reserpine and by the alkaloids of Vinca and Ergot. Morphine, colchicine and papaverine caused weaker inhibition whilst a series of other alkaloids were almost ineffective. Ergot alkaloids were inhibitory towards all steroids tested, androgens, oestrogens and progestagens, and a similar effect was shown with the other inducible enzymes, 3α- and 3β.17β-hydroxysteroid-dehydrogenase.
Experiments with cell-free protein synthesis indicate that reserpine inhibits the induction of messenger RNA.
The non-specific inhibition of the poly U directed polymerisation of phenylalanine through polyanions was studied. This inhibition was found to be in order as follows: dextransulfate, polyethylensulfate, heparine, ribosomal RNA and alginate. It was found that poly A, poly AP and poly AG cause a specific inhibition of the poly U directed synthesis of polyphenylalanine. Poly AG and poly AP, but not poly A were found to inhibit the poly C directed polymerisation of proline as well. The mechanism of these two types of inhibition caused by polyanions has been discussed.
The effect of NNMG on the template activities of different polynucleotides (polyuridylic acid, polycytidylic acid, polyadenylic acid and copolymer of adenylic and guanylic acid 5,5:1) and t-RNS was studied. The maximum inhibition of the messenger activity was found for poly-C, followed by poly-Α and poly-U. The acceptor activity of t-RNA was found to be inhibited by NNMG: maximum for proline, followed by serine, leucine, phenylalanine and lysine. The mechanism of these inhibitions was studied using NNMG radioactively labelled on the methyl group. Different amounts of radioactivity were found in the various polynucleotides and t-RNS.