Refine
Year of publication
Language
- English (174)
Has Fulltext
- yes (174)
Is part of the Bibliography
- no (174)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Heavy ion collisions (2)
- Polarization (2)
- RHIC (2)
Institute
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
We report results on an elastic cross section measurement in proton–proton collisions at a center-of-mass energy √𝑠 = 510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23 ≤ −𝑡 ≤ 0.67 GeV2. This is the only measurement of the proton-proton elastic cross section in this 𝑡 range for collision energies above the Intersecting Storage Rings (ISR) and below the Large Hadron Collider (LHC) colliders. We find that a constant slope 𝐵 does not fit the data in the aforementioned 𝑡 range, and we obtain a much better fit using a second-order polynomial for 𝐵(𝑡). This is the first measurement below the LHC energies for which the non-constant behavior 𝐵(𝑡) is observed. The 𝑡 dependence of 𝐵 is also determined using six subintervals of 𝑡 in the STAR measured 𝑡 range, and is in good agreement with the phenomenological models. The measured elastic differential cross section d𝜎∕dt agrees well with the results obtained at √𝑠 = 540 GeV for proton–antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR 𝑡-range is 𝜎f id el = 462.1 ± 0.9(stat.) ± 1.1(syst.) ± 11.6(scale) 𝜇b.
Measurement of inclusive charged-particle jet production in Au + Au collisions at √sNN=200 GeV
(2020)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at √𝑠𝑁𝑁=200 GeV. Jets are reconstructed with the anti-𝑘𝑇 algorithm using charged tracks with pseudorapidity |𝜂|<1.0 and transverse momentum 0.2<𝑝ch
𝑇,jet<30 GeV/𝑐, with jet resolution parameter 𝑅=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-𝑝𝑇) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the 𝑝𝑇 region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<𝑝ch
𝑇,jet<25 GeV/𝑐 and 5<𝑝ch
𝑇,jet<30 GeV/𝑐, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the 𝑝𝑝 yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high 𝑝𝑇 and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of 𝑅 exhibits no significant evidence for medium-induced broadening of the transverse jet profile for 𝑅 <0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2022)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100\% p+Au collisions at sNN−−−√ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT<2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 Gev/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse.
The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn =200 GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg.
We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance (AJ) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range 0.1< \tsj <0.3, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.