Refine
Year of publication
Language
- English (66)
Has Fulltext
- yes (66)
Is part of the Bibliography
- no (66)
Keywords
- RHIC (2)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
- Di-hadron correlations (1)
- Diffraction (1)
- Elastic scattering (1)
- Flow (1)
Institute
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN=200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p + Au and d + Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.
We report results on the total and elastic cross sections in proton-proton collisions at √s = 200 GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range 0.045 ≤ −t ≤ 0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section dσ/dt ∼ e−Bt in the measured −t range was found to be B = 14.32 ± 0.09(stat.)+0.13 −0.28(syst.) GeV−2. The total cross section σtot, obtained from extrapolation of the dσ/dt to the optical point at −t = 0, is σtot = 54.67 ± 0.21(stat.)+1.28 −1.38(syst.) mb. We also present the values of the elastic cross section σel = 10.85 ± 0.03(stat.)+0..49 −0.41(syst.) mb, the elastic cross section integrated within the STAR t-range σ det el = 4.05 ± 0.01(stat.)+0.18−0.17(syst.) mb, and the inelastic cross section σinel = 43.82 ± 0.21(stat.)+1.37−1.44(syst.) mb. The results are compared with the world data
Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean (M), variance (σ 2), skewness (S), and kurtosis (κ) for net-kaon multiplicity distributions as well as the ratio σ 2/M and the products Sσ and κσ 2 are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.
We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at √sNN = 200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon– bound state. These predictions are based on the proton– interaction extracted from (2 + 1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton– bound system with a binding energy of ∼ 27 MeV.
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies of veven 1 , as well as an observed similarity between its excitation function and that for v3, could serve as constraints for initial-state models. The veven 1 excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at midrapidity (|y| < 1.0) in Au+Au collisions at √sN N = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p + p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due to the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs.
We present three-particle mixed-harmonic correlations 〈cos(mφa + nφb − (m + n)φc )〉 for harmonics m, n = 1 − 3 for charged particles in √sN N = 200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark–gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent viscosity and longitudinal structure of the initial state at RHIC.
We report the direct virtual photon invariant yields in the transverse momentum ranges 1 < pT < 3 GeV/c and 5 < pT < 10 GeV/c at mid-rapidity derived from the dielectron invariant mass continuum region 0.10 < Mee < 0.28 GeV/c2 for 0–80% minimum-bias Au+Au collisions at √sN N = 200 GeV. A clear excess in the invariant yield compared to the nuclear overlap function T A A scaled p + p reference is observed in the pT range 1 < pT < 3 GeV/c. For pT > 6 GeV/c the production follows T A A scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent ithin uncertainties with the direct virtual photon invariant yield.