Refine
Document Type
- Preprint (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
Microbial rhodopsins are omnipresent on Earth, however the vast majority of them remain uncharacterized. Here we describe a new rhodopsin group from cold-adapted organisms and cold environments, such as glaciers, denoted as CryoRhodopsins (CryoRs). Our data suggest that CryoRs have dual functionality switching between inward transmembrane proton translocation and photosensory activity, both of which can be modulated with UV light. CryoR1 exhibits two subpopulations in the ground state, which upon light activation lead to transient photocurrents of opposing polarities. A distinguishing feature of the group is the presence of a buried arginine residue close to the cytoplasmic face of its members. Combining single-particle cryo-electron microscopy and X-ray crystallography with the rhodopsin activation by lit, we demonstrate that the arginine stabilizes a UV-absorbing intermediate of an extremely slow CryoRhodopsin photocycle. Together with extensive spectroscopic characterization, our investigations on CryoR1 and CryoR2 proteins reveal mechanisms of photoswitching in the newly identified group and demonstrate principles of the adaptation of these rhodopsins to low temperatures.Microbial rhodopsins are omnipresent on Earth, however the vast majority of them remain uncharacterized. Here we describe a new rhodopsin group from cold-adapted organisms and cold environments, such as glaciers, denoted as CryoRhodopsins (CryoRs). Our data suggest that CryoRs have dual functionality switching between inward transmembrane proton translocation and photosensory activity, both of which can be modulated with UV light. CryoR1 exhibits two subpopulations in the ground state, which upon light activation lead to transient photocurrents of opposing polarities. A distinguishing feature of the group is the presence of a buried arginine residue close to the cytoplasmic face of its members. Combining single-particle cryo-electron microscopy and X-ray crystallography with the rhodopsin activation by light, we demonstrate that the arginine stabilizes a UV-absorbing intermediate of an extremely slow CryoRhodopsin photocycle. Together with extensive spectroscopic characterization, our investigations on CryoR1 and CryoR2 proteins reveal mechanisms of photoswitching in the newly identified group and demonstrate principles of the adaptation of these rhodopsins to low temperatures.
Microbial rhodopsins are omnipresent on Earth, however the vast majority of them remain uncharacterized. Here we describe a new rhodopsin clade from cold-adapted organisms and cold environments, such as glaciers, denoted as CryoRhodopsins (CryoRs). Our data suggest that CryoRs have photosensory activity. A distinguishing feature of the clade is the presence of a buried arginine residue close to the cytoplasmic face of its members. Combining single-particle cryo-electron microscopy and X-ray crystallography with the rhodopsin activation by light, we demonstrate that the arginine stabilizes a strongly blue-shifted intermediate of an extremely slow CryoRhodopsin photocycle. Together with extensive spectroscopic characterization, our investigations on CryoR1 and CryoR2 proteins reveal mechanisms of photoswitching in the newly identified clade and demonstrate principles of the adaptation of these rhodopsins to low temperatures.
Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identified a new subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterized a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and showed that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a new subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.
Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires’ disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans- isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full- length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.
Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires’ disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.