### Refine

#### Document Type

- Article (1)
- Doctoral Thesis (1)

#### Language

- English (2)

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- no (2)

#### Keywords

#### Institute

- Informatik und Mathematik (1)
- Mathematik (1)

We consider a class of nonautonomous nonlinear competitive parabolic systems on bounded radial domains under Neumann or Dirichlet boundary conditions. We show that, if the initial profiles satisfy a reflection inequality with respect to a hyperplane, then bounded positive solutions are asymptotically (in time) foliated Schwarz symmetric with respect to antipodal points. Additionally, a related result for (positive and sign changing solutions) of scalar equations with Neumann or Dirichlet boundary conditions is given. The asymptotic shape of solutions to cooperative systems is also discussed.

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)ˢ of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √3 + 3/2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.