Refine
Document Type
- Article (7)
- Contribution to a Periodical (1)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- 19F (1)
- Applied vegetation science (1)
- DNA-PAINT (1)
- Dry Grassland Working Group (1)
- FBS (1)
- Festuco-Brometea (1)
- Isoëto-Nanojuncetea (1)
- Koelerio-Corynephoretea (1)
- NMDS (1)
- PRG-1 (1)
Background: Autotaxin (ATX) and its product lysophosphatidic acid (LPA) are considered to be involved in the development of liver fibrosis and elevated levels of serum ATX have been found in patients with hepatitis C virus associated liver fibrosis. However, the clinical role of systemic ATX in the stages of liver cirrhosis was unknown. Here we investigated the relation of ATX serum levels and severity of cirrhosis as well as prognosis of cirrhotic patients.
Methods: Patients with liver cirrhosis were prospectively enrolled and followed until death, liver transplantation or last contact. Blood samples drawn at the day of inclusion in the study were assessed for ATX content by an enzyme-linked immunosorbent assay. ATX levels were correlated with the stage as well as complications of cirrhosis. The prognostic value of ATX was investigated by uni- and multivariate Cox regression analyses. LPA concentration was determined by liquid chromatography-tandem mass spectrometry.
Results: 270 patients were enrolled. Subjects with liver cirrhosis showed elevated serum levels of ATX as compared to healthy subjects (0.814±0.42 mg/l vs. 0.258±0.40 mg/l, P<0.001). Serum ATX levels correlated with the Child-Pugh stage and the MELD (model of end stage liver disease) score and LPA levels (r = 0.493, P = 0.027). Patients with hepatic encephalopathy (P = 0.006), esophageal varices (P = 0.002) and portal hypertensive gastropathy (P = 0.008) had higher ATX levels than patients without these complications. Low ATX levels were a parameter independently associated with longer overall survival (hazard ratio 0.575, 95% confidence interval 0.365–0.905, P = 0.017).
Conclusion: Serum ATX is an indicator for the severity of liver disease and the prognosis of cirrhotic patients.
Fluctuations of the water level at the edges of temporary water bodies provide favourable living conditions for annual plant communities of the phytosociological class Isoëto-Nanojuncetea. Such communities of periodically flooded ponds within the agricultural landscape of NE Germany are particularly rich in rare plant species of that class. During the past decades drainage, fertilisation and herbicides in the surrounding arable fields have led to a severe decline in diversity of these species. To develop efficient conservation strategies it is essential to understand the factors driving the species composition. Therefore, we studied how varying water regimes, soil properties and agricultural practices affect the diversity and species composition of these temporary ponds. The study was carried out in seven ponds on a conventionally managed farm in NE Brandenburg. At each of these wetlands mixed soil samples were taken to determine the pH, total nitrogen and phosphorus concentration. The plant species were recorded in 177 plots, each covering 1 x 1 m2. For each plot, the water level was recorded in April, July and August 2013, respectively, resulting in five "water level regimes". Total species number and percentages of Isoëto-Nanojuncetea species were determined per plot, to evaluate water level effects on the vegetation. In addition, mean Ellenberg indicator values for light, moisture and nutrients were calculated to assess the environmental conditions.
Men and women differ substantially regarding height, weight, and body fat. Interestingly, previous work detecting genetic effects for waist-to-hip ratio, to assess body fat distribution, has found that many of these showed sex-differences. However, systematic searches for sex-differences in genetic effects have not yet been conducted. Therefore, we undertook a genome-wide search for sexually dimorphic genetic effects for anthropometric traits including 133,723 individuals in a large meta-analysis and followed promising variants in further 137,052 individuals, including a total of 94 studies. We identified seven loci with significant sex-difference including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were significant in women, but not in men. Of interest is that sex-difference was only observed for waist phenotypes, but not for height or body-mass-index. We found no evidence for sex-differences with opposite effect direction for men and women. The PPARG locus is of specific interest due to its link to diabetes genetics and therapy. Our findings demonstrate the importance of investigating sex differences, which may lead to a better understanding of disease mechanisms with a potential relevance to treatment options.
Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP
(2015)
Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases.
We report here the nuclear magnetic resonance 19F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.
Mitte März des letzten Jahres erreichte die Corona-Pandemie dann auch die Goethe-Universität: Der Lehrbetrieb in den folgenden Semestern wurde und wird hauptsächlich im digitalen Modus durchgeführt, viele Mitarbeiter*innen arbeiten seitdem im Homeoffice, Hygiene- und Abstandsregeln gelten in Räumen und auf Plätzen. In kürzester Zeit mussten Arbeitsabläufe neu organisiert und viele Services auf digitale Prozesse umgestellt werden. Aber das Wichtigste: Die Infektionszahlen konnten gering gehalten werden. Der UniReport hat einige Hochschulangehörige aus Wissenschaft, Verwaltung und Studierendenschaft nach ihren Erfahrungen und Erkenntnissen in diesem außergewöhnlichen Jahr befragt.
Riboswitches are gene regulatory elements located in untranslated mRNA regions. They bind inducer molecules with high affinity and specificity. Cyclic-di-nucleotide-sensing riboswitches are major regulators of genes for the environment, membranes and motility (GEMM) of bacteria. Up to now, structural probing assays or crystal structures have provided insight into the interaction between cyclic-di-nucleotides and their corresponding riboswitches. ITC analysis, NMR analysis and computational modeling allowed us to gain a detailed understanding of the gene regulation mechanisms for the Cd1 (Clostridium difficile) and for the pilM (Geobacter metallireducens) riboswitches and their respective di-nucleotides c-di-GMP and c-GAMP. Binding capability showed a 25 nucleotide (nt) long window for pilM and a 61 nt window for Cd1. Within this window, binding affinities ranged from 35 μM to 0.25 μM spanning two orders of magnitude for Cd1 and pilM showing a strong dependence on competing riboswitch folds. Experimental results were incorporated into a Markov simulation to further our understanding of the transcriptional folding pathways of riboswitches. Our model showed the ability to predict riboswitch gene regulation and its dependence on transcription speed, pausing and ligand concentration.
We give a report of the fourth annual symposium of the Dry Grassland Working Group, which was organized in conjunction with the second workshop ‘Floristics and geobotany - Contributions to applied questions’, from 6 to 8 Sept. 2007 in Freising-Weihenstephan. The symposium was entitled ‘Restoration and spontaneous establishment of dry and semi-dry grasslands at traditional and urban-industrial sites’. Additionally, the aims of the Dry Grassland Working Group are shortly outlined and the next symposia of both groups are announced.