Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Batten disease (1)
- CLN3 (1)
- gangliosides (1)
- glycosphingolipids (1)
- lysosomal storage disorders (1)
- neuronal ceroid lipofuscinosis (1)
Institute
Juvenile neuronal ceroid-lipofuscinosis (JNCL) is a rare lysosomal storage disease in children with lethal outcome and no therapy. The origin of JNCL has been traced to autosomal recessive mutations in the CLN3 gene, and ~85% of the JNCL patients harbor a 1.02 kb deletion that removes the exons 7 and 8 and the surrounding intronic DNA (CLN3Δex7/8). So far, structure, function and localization of the CLN3 protein remain elusive. However, there is strong evidence that CLN3 modulates a process or condition that is essential in many cellular pathways. Lipid metabolism and antero-/retrograde transport, two mechanisms CLN3 was previously implicated in, fulfill these requirements. Notably, also a bioactive group of glycosphingolipids referred to as gangliosides is tightly interrelated with these functions. Furthermore, a-series gangliosides have been shown to be involved in the development and sustenance of the brain, where they are essential for neurite outgrowth and cell survival. Defects in ganglioside metabolism were shown to play a crucial role in many lysosomal storage disorders. However, the contribution of gangliosides to NCL pathology is largely unknown.
The present study analyzed central enzymes and metabolites of the a-series ganglioside pathway in a JNCL cell model. The core finding was, thereby, the reduced amount of the neuroprotective ganglioside GM1 in homozygous CbCln3Δex7/8 cells. This was caused by the enhanced action of the GM1-degrading multimeric enzyme complex and in particular, by the upregulation of protein levels and increased enzyme activity of β-galactosidase (Glb1).
Improved binding of Glb1 to substrate-carrying membranes was provided by an increase in LBPA levels. In combination with other smaller alterations in the ganglioside pattern, a shift towards less complex gangliosides became present. The resulting loss of neuroprotection may be the reason for the multifocal pathology in homozygous CbCln3Δex7/8 cells.
The second part of the present study investigated the cellular mechanisms behind the altered ganglioside profile with regard to the potential role of CLN3. Here, the anterograde transport of GM1 to the plasma membrane presented a positive correlation with the amount of full-length CLN3. In case of the truncated protein this correlation was missing, resulting in reduced PM staining with CTxB-FITC. However, transfection of full-length CLN3 in these cells restored the CTxB-FITC intensity. Based on the neuroprotective role of GM1, the corresponding increase in GM1 levels may be the cause for the restoration effects observed in previous studies using full-length CLN3. Hence, administration of GM1 was expected to improve cell viability of homozygous CbCln3Δex7/8 cells and beyond that to rescue potentially some disease phenotypes. However, no effect could be observed. The reason for this may be reduced caveolar uptake and the mislocalization of ganglioside GM1 to the trans-Golgi network (TGN) and redirection towards degradative compartments.
Both are in line with the idea of an impaired endocytic flux in CLN3 deficiency. The observed localization of CLN3 in the TGN suggests a potential role for CLN3 in the lipid sorting machinery, subsequently altering membrane composition and its regulatory functions. The resulting imbalance may affect many of the cellular processes impaired in JNCL.
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.