Refine
Language
- English (47)
Has Fulltext
- yes (47)
Is part of the Bibliography
- no (47)
Keywords
- Canonical suppression (1)
- Particle production (1)
- Quark–gluon plasma (1)
- Resonances (1)
- Strangeness enhancement (1)
Institute
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of 𝐽/𝜓→𝑒+𝑒− at midrapidity and high transverse momentum (𝑝𝑇>5 GeV/𝑐) in 𝑝+𝑝 and central Cu+Cu collisions at √𝑠𝑁𝑁=200 GeV. The inclusive 𝐽/𝜓 production cross section for Cu+Cu collisions is found to be consistent at high 𝑝𝑇 with the binary collision-scaled cross section for 𝑝+𝑝 collisions. At a confidence level of 97%, this is in contrast to a suppression of 𝐽/𝜓 production observed at lower 𝑝𝑇. Azimuthal correlations of 𝐽/𝜓 with charged hadrons in 𝑝+𝑝 collisions provide an estimate of the contribution of 𝐵-hadron decays to 𝐽/𝜓 production of 13%±5%.
We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.