### Refine

#### Language

- English (8)

#### Has Fulltext

- yes (8)

#### Is part of the Bibliography

- no (8)

#### Keywords

- Action potentials (1)
- Biophysics (1)
- Depression (1)
- Fourier analysis (1)
- Neurons (1)
- Neurotransmission (1)
- Synapses (1)
- Vesicles (1)

#### Institute

Investigators in the cognitive neurosciences have turned to Big Data to address persistent replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. While there is tremendous potential to advance science through open data sharing, these efforts unveil a host of new questions about how to integrate data arising from distinct sources and instruments. We focus on the most frequently assessed area of cognition - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated raw data from 53 studies from around the world which measured at least one of three distinct verbal learning tasks, totaling N = 10,505 healthy and brain-injured individuals. A mega analysis was conducted using empirical bayes harmonization to isolate and remove site effects, followed by linear models which adjusted for common covariates. After corrections, a continuous item response theory (IRT) model estimated each individual subject’s latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance by 37% while preserving covariate effects. The effects of age, sex, and education on scores were found to be highly consistent across memory tests. IRT methods for equating scores across AVLTs agreed with held-out data of dually-administered tests, and these tools are made available for free online. This work demonstrates that large-scale data sharing and harmonization initiatives can offer opportunities to address reproducibility and integration challenges across the behavioral sciences.

Abstract: Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission.
Author Summary: Neurons take a great variety of shapes that allow them to perform their different computational roles across the brain. The most distinctive visible feature of many neurons is the extensively branched network of cable-like projections that make up their dendritic tree. A neuron receives current-inducing synaptic contacts from other cells across its dendritic tree. As in the case of botanical trees, dendritic trees are strongly tapered towards their tips. This tapering has previously been shown to offer a number of advantages over a constant width, both in terms of reduced energy requirements and the robust integration of inputs at different locations. However, in order to predict the computations that neurons perform, analytical solutions for the flow of input currents tend to assume constant dendritic diameters. Here we introduce an asymptotic approximation that accurately models the current transfer in dendritic trees with arbitrary, continuously changing, diameters. When we then determine the diameter profiles that maximise current transfer towards the cell body we find diameters similar to those observed in real neurons. We conclude that the tapering in dendritic trees to optimise signal transmission is a fundamental architectural principle of the brain.

Transmission of temporally correlated spike trains through synapses with short-term depression
(2018)

Short-term synaptic depression, caused by depletion of releasable neurotransmitter, modulates the strength of neuronal connections in a history-dependent manner. Quantifying the statistics of synaptic transmission requires stochastic models that link probabilistic neurotransmitter release with presynaptic spike-train statistics. Common approaches are to model the presynaptic spike train as either regular or a memory-less Poisson process: few analytical results are available that describe depressing synapses when the afferent spike train has more complex, temporally correlated statistics such as bursts. Here we present a series of analytical results—from vesicle release-site occupancy statistics, via neurotransmitter release, to the post-synaptic voltage mean and variance—for depressing synapses driven by correlated presynaptic spike trains. The class of presynaptic drive considered is that fully characterised by the inter-spike-interval distribution and encompasses a broad range of models used for neuronal circuit and network analyses, such as integrate-and-fire models with a complete post-spike reset and receiving sufficiently short-time correlated drive. We further demonstrate that the derived post-synaptic voltage mean and variance allow for a simple and accurate approximation of the firing rate of the post-synaptic neuron, using the exponential integrate-and-fire model as an example. These results extend the level of biological detail included in models of synaptic transmission and will allow for the incorporation of more complex and physiologically relevant firing patterns into future studies of neuronal networks.

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal like distribution of spines.

The electrical and computational properties of neurons in our brains are determined by a rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However, the precise reason for this inherent complexity remains unknown. Here, we generated large stochastic populations of biophysically realistic hippocampal granule cell models comparing those with all 15 ion channels to their reduced but functional counterparts containing only 5 ion channels. Strikingly, valid parameter combinations in the full models were more frequent and more stable in the face of perturbations to channel expression levels. Scaling up the numbers of ion channels artificially in the reduced models recovered these advantages confirming the key contribution of the actual number of ion channel types. We conclude that the diversity of ion channels gives a neuron greater flexibility and robustness to achieve target excitability.

Reducing neuronal size results in less cell membrane and therefore lower input conductance. Smaller neurons are thus more excitable as seen in their voltage responses to current injections in the soma. However, the impact of a neuron’s size and shape on its voltage responses to synaptic activation in dendrites is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs and show that these are entirely independent of dendritic length. For a given synaptic density, a neuron’s response depends only on the average dendritic diameter and its intrinsic conductivity. These results remain true for the entire range of possible dendritic morphologies irrespective of any particular arborisation complexity. Also, spiking models result in morphology invariant numbers of action potentials that encode the percentage of active synapses. Interestingly, in contrast to spike rate, spike times do depend on dendrite morphology. In summary, a neuron’s excitability in response to synaptic inputs is not affected by total dendrite length. It rather provides a homeostatic input-output relation that specialised synapse distributions, local non-linearities in the dendrites and synaptic plasticity can modulate. Our work reveals a new fundamental principle of dendritic constancy that has consequences for the overall computation in neural circuits.

Excess neuronal branching allows for innervation of specific dendritic compartments in cortex
(2019)

The connectivity of cortical microcircuits is a major determinant of brain function; defining how activity propagates between different cell types is key to scaling our understanding of individual neuronal behaviour to encompass functional networks. Furthermore, the integration of synaptic currents within a dendrite depends on the spatial organisation of inputs, both excitatory and inhibitory. We identify a simple equation to estimate the number of potential anatomical contacts between neurons; finding a linear increase in potential connectivity with cable length and maximum spine length, and a decrease with overlapping volume. This enables us to predict the mean number of candidate synapses for reconstructed cells, including those realistically arranged. We identify an excess of putative connections in cortical data, with densities of neurite higher than is necessary to reliably ensure the possible implementation of any given connection. We show that potential contacts allow the particular implementation of connectivity at a subcellular level.

Inspired by the physiology of neuronal systems in the brain, artificial neural networks have become an invaluable tool for machine learning applications. However, their biological realism and theoretical tractability are limited, resulting in poorly understood parameters. We have recently shown that biological neuronal firing rates in response to distributed inputs are largely independent of size, meaning that neurons are typically responsive to the proportion, not the absolute number, of their inputs that are active. Here we introduce such a normalisation, where the strength of a neuron’s afferents is divided by their number, to various sparsely-connected artificial networks. The learning performance is dramatically increased, providing an improvement over other widely-used normalisations in sparse networks. The resulting machine learning tools are universally applicable and biologically inspired, rendering them better understood and more stable in our tests.