Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Cy5.5 (1)
- DiI (1)
- PLGA nanoparticles (1)
- advanced melanoma (1)
- brightness (1)
- complete response (1)
- confocal microscopy (1)
- coumarin 6 (1)
- discontinuation (1)
- disease progression (1)
Institute
- Medizin (4)
- Biochemie, Chemie und Pharmazie (1)
- Pharmazie (1)
The Education Against Tobacco (EAT) network delivers smoking prevention advice in secondary schools, typically using the mirroring approach (i.e., a "selfie" altered with a face-aging app and shared with a class). In November 2017, however, the German assembly of EAT opted to expand its remit to include nursing students. To assess the transferability of the existing approach, we implemented it with the self-developed face-aging app "Smokerface" (=mixed − methods approach) in six nursing schools. Anonymous questionnaires were used to assess the perceptions of 197 students (age 18–40 years; 83.8% female; 26.4% smokers; 23.3% daily smokers) collecting qualitative and quantitative data for our cross-sectional study. Most students perceived the intervention to be fun (73.3%), but a minority disagreed that their own animated selfie (25.9%) or the reaction of their peers (29.5%) had motivated them to stop smoking. The impact on motivation not to smoke was considerably lower than experienced with seventh graders (63.2% vs. 42.0%; notably, more smokers also disagreed (45.1%) than agreed (23.5%) with this statement. Agreement rates on the motivation not to smoke item were higher in females than in males and in year 2–3 than in year 1 students. Potential improvements included greater focus on pathology (29%) and discussing external factors (26%). Overall, the intervention seemed to be appealing for nursing students
Background: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.
Simple Summary: The introduction of BRAF/MEK-directed targeted therapy (TT) has significantly improved the management of patients with advanced BRAF-V600-mutant melanoma. Although resistance occurs, there is a subgroup of patients showing a complete response (CR) to TT and who maintain durable disease control. For these patients with durable CR, it is not clear whether it is safe to cease therapy. In this retrospective, multicenter study we have analyzed 37 patients who received TT and achieved a CR upon treatment. We identified 15 patients with a durable CR to TT. Overall, patients who discontinued TT (n = 26) were at higher risk of tumor progression compared to patients receiving ongoing TT. Sustained CR was however not restricted to patients with ongoing TT (n = 11) but was also found in patients who ceased TT (n = 4). Finally, our analysis indicated which patients with an initial CR might be most likely to maintain durable CR upon discontinuation of TT.
Abstract: The advent of BRAF/MEK inhibitors (BRAFi/MEKi) has significantly improved progression-free (PFS) and overall survival (OS) for patients with advanced BRAF-V600-mutant melanoma. Long-term survivors have been identified particularly among patients with a complete response (CR) to BRAF/MEK-directed targeted therapy (TT). However, it remains unclear which patients who achieved a CR maintain a durable response and whether treatment cessation might be a safe option in these patients. Therefore, this study investigated the impact of treatment cessation on the clinical course of patients with a CR upon BRAF/MEK-directed-TT. We retrospectively selected patients with BRAF-V600-mutant advanced non-resectable melanoma who had been treated with BRAFi ± MEKi therapy and achieved a CR upon treatment out of the multicentric skin cancer registry ADOReg. Data on baseline patient characteristics, duration of TT, treatment cessation, tumor progression (TP) and response to second-line treatments were collected and analyzed. Of 461 patients who received BRAF/MEK-directed TT 37 achieved a CR. TP after initial CR was observed in 22 patients (60%) mainly affecting patients who discontinued TT (n = 22/26), whereas all patients with ongoing TT (n = 11) maintained their CR. Accordingly, patients who discontinued TT had a higher risk of TP compared to patients with ongoing treatment (p < 0.001). However, our data also show that patients who received TT for more than 16 months and who discontinued TT for other reasons than TP or toxicity did not have a shorter PFS compared to patients with ongoing treatment. Response rates to second-line treatment being initiated in 21 patients, varied between 27% for immune-checkpoint inhibitors (ICI) and 60% for BRAFi/MEKi rechallenge. In summary, we identified a considerable number of patients who achieved a CR upon BRAF/MEK-directed TT in this contemporary real-world cohort of patients with BRAF-V600-mutant melanoma. Sustained PFS was not restricted to ongoing TT but was also found in patients who discontinued TT.
Fluorescently labeled nanoparticles are widely used for evaluating their distribution in the biological environment. However, dye leakage can lead to misinterpretations of the nanoparticles’ biodistribution. To better understand the interactions of dyes and nanoparticles and their biological environment, we explored PLGA nanoparticles labeled with four widely used dyes encapsulated (coumarin 6, rhodamine 123, DiI) or bound covalently to the polymer (Cy5.5.). The DiI label was stable in both aqueous and lipophilic environments, whereas the quick release of coumarin 6 was observed in model media containing albumin (42%) or liposomes (62%), which could be explained by the different affinity of these dyes to the polymer and lipophilic structures and which we also confirmed by computational modeling (log PDPPC/PLGA: DiI—2.3, Cou6—0.7). The importance of these factors was demonstrated by in vivo neuroimaging (ICON) of the rat retina using double-labeled Cy5.5/Cou6-nanoparticles: encapsulated Cou6 quickly leaked into the tissue, whereas the stably bound Cy.5.5 label remained associated with the vessels. This observation is a good example of the possible misinterpretation of imaging results because the coumarin 6 distribution creates the impression that nanoparticles effectively crossed the blood–retina barrier, whereas in fact no signal from the core material was found beyond the blood vessels.