Refine
Year of publication
Document Type
- Article (14)
- Doctoral Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Advanced glycation endproducts (1)
- Alpha-synuclein (1)
- Alpha-synuclein deficiency (1)
- Alzheimer’s dementia (1)
- Amyloid-beta 42 (1)
- Biomarkers (1)
- Complexin-1 (1)
- Direct reactions (1)
- Foxp1 (1)
- Glucose metabolism (1)
Institute
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300–450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type AO(p,2p)A−1N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
Während der vergangenen Jahrzehnte stieg die durchschnittliche Lebenserwartung der Bevölkerung in den westlichen Industrieländern durch die Verbesserung der allgemeinen Lebensbedingungen, insbesondere durch die Fortschritte in der Hygiene und der Medizin sowie stabile politische Verhältnisse, kontinuierlich an. Aufgrund dieser demographischen Entwicklung zu einer zunehmend älter werdenden Gesellschaft nimmt auch das Auftreten von progressiven, altersabhängigen Erkrankungen, wie zum Beispiel der Parkinson‟schen Krankheit zu. Dieser Trend stellt sowohl für die betroffenen Patienten und ihre Angehörigen als auch für die Gesundheits- und Sozialsysteme eine gewaltige und kostenintensive Herausforderung dar. Um wirkungsvolle Therapien entwickeln zu können, die früh im Krankheitsverlauf eingreifen und die Manifestation der Erkrankung verhindern oder verzögern beziehungs-weise die darauf abzielen, die Symptome der Erkrankung nach deren Manifestation zu lindern, ist es unerlässlich, die diesen progressiven, altersabhängigen Krankheiten zugrundeliegenden Mechanismen zu erforschen und entsprechende krankheitsspezifische, molekulare Biomarker zu identifizieren. Darüber hinaus stellt die Identifizierung solcher Biomarker einen wichtigen Ansatzpunkt für die klinische Diagnostik und Therapeutik sowie für die Entwicklung neuer therapeutischer Behandlungsstrategien dar. Das subzellulär vorwiegend präsynaptisch lokalisierte Protein alpha-Synuklein blieb in den Jahren nach seiner Erstbeschreibung 1988 durch Luc Maroteaux von der biomedizinischen Forschung weitgehend unbeachtet. Erst die Assoziationen von unterschiedlichen Mutationen des alpha-Synuklein-Gens mit seltenen, autosomal-dominant vererbten, monogenetischen Varianten der Parkinson‟schen Krankheit (PARK1 und PARK4) seit 1997 sowie die Identifizierung des Proteins im Jahre 1998 als Hauptbestandteil von intrazellulären Proteinaggregaten (Lewy-Körpern und Lewy-Neuriten), deren Vorkommen charakteristisch für progressive, neurodegenerative und unter dem Sammelbegriff „Synukleinopathien“ klassifizierte Erkrankungen (wie beispielsweise auch die häufigen, sporadischen Formen der Parkinson‟schen Krankheit) ist, ließen das alpha-Synuklein in den Fokus der biomedizinischen Forschung rücken. Trotz intensiver Bemühungen der weltweiten Forschungsgemeinschaft konnten seitdem in den vergangenen 13 Jahren die physiologischen Funktionen von alpha-Synuklein und die den unterschiedlichen Synukleinopathien zugrundeliegenden, molekularen pathophysiologischen Mechanismen nicht genau identifiziert werden. Stattdessen führte die intensive Forschung an alpha-Synuklein mit den unterschiedlichsten experimentellen Herangehensweisen und Modellsystemen zu verschiedenen und teilweise kontroversen Hypothesen und Theorien über dessen physiologische Funktion und pathophysiologische Wirkungsweisen. Die in dieser Dissertationschrift dargestellten experimentellen Untersuchungen wurden an zwei speziellen transgenen Mausmodellen durchgeführt, die entweder einen vollständigen Mangel (= „knockout“; KO) des alpha-Synuklein-Proteins oder eine transgene Überexpression von humanem, A53T-mutierten alpha-Synuklein aufwiesen. Das Hauptziel der dargestellten Studien war es, neue Erkenntnisse hinsichtlich der physiologischen Funktionen des alpha-Synuklein-Proteins, beziehungsweise der krankheits-relevanten, pathophysiologischen Mechanismen der den familiären PARK1- und PARK4-Varianten der Parkinson‟schen Krankheit zugrundeliegenden alpha-Synuklein-Mutationen (Substitution von Alanin durch Threonin an Position 53 der Aminosäuresequenz (A53T; PARK1) sowie Überexpression (Genduplikation/-triplikation; PARK4)) zu gewinnen...
BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. CONCLUSIONS/SIGNIFICANCE: Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.
Parkinson’s disease (PD) is a neurodegenerative disorder frequent at old age characterized by atrophy of the nigrostriatal projection. Overexpression and A53T-mutation of the presynaptic, vesicle-associated chaperone alpha-synuclein are known to cause early-onset autosomal dominant PD. We previously generated mice with transgenic overexpression of human A53T-alpha-synuclein (A53T-SNCA) in dopaminergic substantia nigra neurons as a model of early PD. To elucidate the early and late effects of A53T-alpha-synuclein on the proteome of dopaminergic nerve terminals in the striatum, we now investigated expression profiles of young and old mice using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and mass spectrometry. In total, 15 proteins were upregulated and 2 downregulated. Mice before the onset of motor anomalies showed an upregulation of the spot containing 14-3-3 proteins, in particular the epsilon isoform, as well as altered levels of chaperones, vesicle trafficking and bioenergetics proteins. In old mice, the persistent upregulation of 14-3-3 proteins was aggravated by an increase of glial fibrillary acidic protein (GFAP) suggesting astrogliosis due to initial neurodegeneration. Independent immunoblots corroborated GFAP upregulation and 14-3-3 upregulation for the epsilon isoform, and also detected significant eta and gamma changes. Only for 14-3-3 epsilon a corresponding mRNA increase was observed in midbrain, suggesting it is transcribed in dopaminergic perikarya and accumulates as protein in presynapses, together with A53T-SNCA. 14-3-3 proteins associate with alpha-synuclein in vitro and in pathognomonic Lewy bodies of PD brains. They act as chaperones in signaling, dopamine synthesis and stress response. Thus, their early dysregulation probably reflects a response to alpha-synuclein toxicity.
Electronic supplementary material: The online version of this article (doi:10.1007/s00702-011-0717-3) contains supplementary material, which is available to authorized users.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
The presynaptic protein alpha-synuclein has received much attention because its gain-of-function is associated with Parkinson’s disease. However, its physiological function is still poorly understood. We studied brain regions of knock-out mice at different ages with regard to consistent upregulations of the transcriptome and focused on glyoxalase I (GLO1). The microarray data were confirmed in qPCR, immunoblot, enzyme activity, and behavior analyses. GLO1 induction is a known protective cellular response to glucose stress, representing efforts to decrease toxic levels of methylglyoxal (MG), glyoxal and advanced glycation endproducts (AGEs). Mass spectrometry quantification demonstrated a ubiquitous increase in MG and fructosyl-lysine as consequences of glucose toxicity, and consistent enhancement of certain AGEs. Thus, GLO1 induction in KO brain seems insufficient to prevent AGE formation. In conclusion, the data demonstrate GLO1 expression and glycation damage to be induced by alpha-synuclein ablation. We propose that wild-type alpha-synuclein modulates brain glucose metabolism.
Complexin-1 and foxp1 expression changes are novel brain effects of
alpha-synuclein pathology
(2014)
As the second most frequent neurodegenerative disorder of the aging population, Parkinson’s disease (PD) is characterized by progressive deficits in spontaneous movement, atrophy of dopaminergic midbrain neurons and aggregation of the protein alpha-synuclein (SNCA). To elucidate molecular events before irreversible cell death, we studied synucleinopathy-induced expression changes in mouse brain and identified 49 midbrain/brainstem-specific transcriptional dysregulations. In particular complexin-1 (Cplx1), Rabl2a and 14-3-3epsilon (Ywhae) downregulation, as well as upregulation of the midbrain-specific factor forkhead box P1 (Foxp1) and of Rabgef1, were interesting as early mRNA level effects of alpha-synuclein triggered pathology. The protein levels of complexin-1 were elevated in midbrain/brainstem tissue of mice with A53T-SNCA overexpression and of mice with SNCA-knockout. The response of CPLX1 and Foxp1 levels to SNCA deficiency supports the notion that these factors are regulated by altered physiological function of alpha-synuclein. Thus, their analysis might be useful in PD stages before the advent of Lewy pathology. Because both alpha-synuclein and complexin-1 modulate vesicle release, our findings support presynaptic dysfunction as an early event in PD pathology.
Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi) have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR) which seems to be absent in the mitochondrial DNA (mtDNA) of other cone snail species. This possible CR spans about 700 base pairs (bp) and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF) and cytochrome c oxidase subunit III (cox3). The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription.