Refine
Document Type
- Working Paper (6)
- Article (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- DSGE (3)
- Numerical accuracy (3)
- Solution methods (3)
- Bayesian estimation (2)
- DSGE model (2)
- monetary policy (2)
- time-varying risk premia (2)
- ARMA (1)
- Bayesian analysis (1)
- DSGE models (1)
The authors propose a new method to forecast macroeconomic variables that combines two existing approaches to mixed-frequency data in DSGE models. The first existing approach estimates the DSGE model in a quarterly frequency and uses higher frequency auxiliary data only for forecasting. The second method transforms a quarterly state space into a monthly frequency. Their algorithm combines the advantages of these two existing approaches.They compare the new method with the existing methods using simulated data and real-world data. With simulated data, the new method outperforms all other methods, including forecasts from the standard quarterly model. With real world data, incorporating auxiliary variables as in their method substantially decreases forecasting errors for recessions, but casting the model in a monthly frequency delivers better forecasts in normal times.
The authors present and compare Newton-based methods from the applied mathematics literature for solving the matrix quadratic that underlies the recursive solution of linear DSGE models. The methods are compared using nearly 100 different models from the Macroeconomic Model Data Base (MMB) and different parameterizations of the monetary policy rule in the medium-scale New Keynesian model of Smets and Wouters (2007) iteratively. They find that Newton-based methods compare favorably in solving DSGE models, providing higher accuracy as measured by the forward error of the solution at a comparable computation burden. The methods, however, suffer from their inability to guarantee convergence to a particular, e.g. unique stable, solution, but their iterative procedures lend themselves to refining solutions either from different methods or parameterizations.
The term structure of interest rates is crucial for the transmission of monetary policy to financial markets and the macroeconomy. Disentangling the impact of monetary policy on the components of interest rates, expected short rates, and term premia is essential to understanding this channel. To accomplish this, we provide a quantitative structural model with endogenous, time-varying term premia that are consistent with empirical findings. News about future policy, in contrast to unexpected policy shocks, has quantitatively significant effects on term premia along the entire term structure. This provides a plausible explanation for partly contradictory estimates in the empirical literature.
The authors relax the standard assumption in the dynamic stochastic general equilibrium (DSGE) literature that exogenous processes are governed by AR(1) processes and estimate ARMA (p,q) orders and parameters of exogenous processes. Methodologically, they contribute to the Bayesian DSGE literature by using Reversible Jump Markov Chain Monte Carlo (RJMCMC) to sample from the unknown ARMA orders and their associated parameter spaces of varying dimensions.
In estimating the technology process in the neoclassical growth model using post war US GDP data, they cast considerable doubt on the standard AR(1) assumption in favor of higher order processes. They find that the posterior concentrates density on hump-shaped impulse responses for all endogenous variables, consistent with alternative empirical estimates and the rigidities behind many richer structural models. Sampling from noninvertible MA representations, a negative response of hours to a positive technology shock is contained within the posterior credible set. While the posterior contains significant uncertainty regarding the exact order, the results are insensitive to the choice of data filter; this contrasts with the authors’ ARMA estimates of GDP itself, which vary significantly depending on the choice of HP or first difference filter.
The term structure of interest rates is crucial for the transmission of monetary policy to financial markets and the macroeconomy. Disentangling the impact of monetary policy on the components of interest rates, expected short rates and term premia, is essential to understanding this channel. To accomplish this, we provide a quantitative structural model with endogenous, time-varying term premia that are consistent with empirical findings. News about future policy, in contrast to unexpected policy shocks, has quantitatively significant effects on term premia along the entire term structure. This provides a plausible explanation for partly contradictory estimates in the empirical literature.
On the accuracy of linear DSGE solution methods and the consequences for log-normal asset pricing
(2021)
This paper demonstrates a failure of standard, generalized Schur (or QZ) decomposition based solutions methods for linear dynamic stochastic general equilibrium (DSGE) models when there is insufficient eigenvalue separation about the unit circle. The significance of this is demonstrated in a simple production-based asset pricing model with external habit formation. While the exact solution afforded by the simplicity of the model matches post-war US consumption growth and the equity premium, QZ-based numerical solutions miss the later by many annualized percentage points.
This paper presents and compares Bernoulli iterative approaches for solving linear DSGE models. The methods are compared using nearly 100 different models from the Macroeconomic Model Data Base (MMB) and different parameterizations of the monetary policy rule in the medium-scale New Keynesian model of Smets and Wouters (2007) iteratively. I find that Bernoulli methods compare favorably in solving DSGE models to the QZ, providing similar accuracy as measured by the forward error of the solution at a comparable computation burden. The method can guarantee convergence to a particular, e.g., unique stable, solution and can be combined with other iterative methods, such as the Newton method, lending themselves especially to refining solutions.