Refine
Document Type
- Article (111)
- Preprint (32)
- Bachelor Thesis (1)
Has Fulltext
- yes (144)
Is part of the Bibliography
- no (144)
Keywords
- BESIII (9)
- Branching fraction (5)
- e+-e− Experiments (3)
- Charm physics (2)
- Hadronic decays (2)
- Initial state radiation (2)
- Lepton colliders (2)
- Particle decays (2)
- decays (2)
- e +-e − Experiments (2)
Institute
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV by the BESIII detector at the BEPCII, we measure the branching fractions of the singly Cabibbo-suppressed decays 𝐷→𝜔𝜋𝜋 to be ℬ(𝐷0→𝜔𝜋+𝜋−)=(1.33±0.16±0.12)×10−3 and ℬ(𝐷+→𝜔𝜋+𝜋0)=(3.87±0.83±0.25)×10−3, where the first uncertainties are statistical and the second ones systematic. The statistical significances are 12.9𝜎 and 7.7𝜎, respectively. The precision of ℬ(𝐷0→𝜔𝜋+𝜋−) is improved by a factor of 2.1 over prior measurements, and ℬ(𝐷+→𝜔𝜋+𝜋0) is measured for the first time. No significant signal for 𝐷0→𝜔𝜋0𝜋0 is observed, and the upper limit on the branching fraction is ℬ(𝐷0→𝜔𝜋0𝜋0)<1.10×10−3 at the 90% confidence level. The branching fractions of 𝐷→𝜂𝜋𝜋 are also measured and consistent with existing results.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Combining with theoretical predictions, we extract the CKM matrix element |Vcd|=0.204±0.007stat±0.007syst±0.014theory. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.