Refine
Year of publication
- 2023 (2)
Document Type
- Preprint (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics flexible fitting, we construct a blueprint of the SD, where we describe all interactions. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier under no-flow conditions. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics simulations, we construct a blueprint of the SD that explains its molecular architecture. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.