Refine
Year of publication
Language
- English (104)
Has Fulltext
- yes (104)
Is part of the Bibliography
- no (104)
Keywords
- BESIII (3)
- Collectivity (2)
- Correlation (2)
- Diffraction (2)
- RHIC (2)
- Shear viscosity (2)
- accessibility switch (2)
- inward proton pump (2)
- microbial rhodopsin (2)
- Absolute branching fraction (1)
Institute
Using an 𝑒+𝑒− collision data sample of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV by the BESIII detector at BEPCII, we report the observation of 𝐷0→𝑎0(980)−𝑒+𝜈𝑒 and evidence for 𝐷+→𝑎0(980)0𝑒+𝜈𝑒 with significances of 6.4𝜎 and 2.9𝜎, respectively. The absolute branching fractions are determined to be ℬ(𝐷0→𝑎0(980)−𝑒+𝜈𝑒)×ℬ(𝑎0(980)−→𝜂𝜋−) = [1.33+0.33−0.29(stat)±0.09(syst)]×10−4 and ℬ(𝐷+→𝑎0(980)0𝑒+𝜈𝑒)×ℬ(𝑎0(980)0→𝜂𝜋0)=[1.66+0.81
−0.66(stat)±0.11(syst)]×10−4. This is the first time the 𝑎0(980) meson has been measured in a 𝐷0 semileptonic decay, which would open one more interesting page in the investigation of the nature of the puzzling 𝑎0(980) states.
Search for the reaction channel e⁺e⁻ → ηcηπ⁺π⁻ at center-of-mass energies from 4.23 to 4.60 GeV
(2021)
Using data collected with the BESIII detector operating at the Beijing Electron Positron Collider, we search for the process 𝑒+𝑒−→𝜂𝑐𝜂𝜋+𝜋−. The search is performed using five large datasets recorded at center-of-mass energies of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV. The 𝜂𝑐 meson is reconstructed in 16 exclusive decay modes. No signal is observed in the 𝜂𝑐 mass region at any center-of-mass energy. The upper limits on the reaction cross sections are determined to be 6.2, 10.8, 27.6, 22.6 and 23.7 pb at the 90% confidence level at the center-of-mass energies listed above.
We measure the Born cross sections of the process 𝑒+𝑒−→𝐾+𝐾−𝐾+𝐾− at center-of-mass (c.m.) energies, √𝑠, between 2.100 and 3.080 GeV. The data were collected using the BESIII detector at the BEPCII collider. An enhancement at √𝑠=2.232 GeV is observed, very close to the 𝑒+𝑒−→Λ¯Λ production threshold. A similar enhancement at the same c.m. energy is observed in the 𝑒+𝑒−→𝜙𝐾+𝐾− cross section. The energy dependence of the 𝐾+𝐾−𝐾+𝐾− and 𝜙𝐾+𝐾− cross sections differs significantly from that of 𝑒+𝑒−→𝜙𝜋+𝜋−.
Using 𝑒+𝑒−→Λ+𝑐¯Λ−𝑐 production from a 567 pb−1 data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λ+𝑐→𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0, and Σ0𝜋+. For the first time, the Λ+𝑐 transverse polarization is studied in unpolarized 𝑒+𝑒− collisions, where a nonzero effect is observed with a statistical significance of 2.1𝜎. The decay asymmetry parameters of the Λ+𝑐 weak hadronic decays into 𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0 and Σ0𝜋+ are measured to be 0.18±0.43(stat)±0.14(syst), −0.80±0.11(stat)±0.02(syst), −0.57±0.10(stat)±0.07(syst), and −0.73±0.17(stat)±0.07(syst), respectively. In comparison with previous results, the measurements for the Λ𝜋+ and Σ+𝜋0 modes are consistent but with improved precision, while the parameters for the 𝑝𝐾0𝑆 and Σ0𝜋+ modes are measured for the first time.
A partial-wave analysis of the decay 𝐽/𝜓→𝐾+𝐾−𝜋0 has been made using (223.7±1.4)×106 𝐽/𝜓 events collected with the BESIII detector in 2009. The analysis, which is performed within the isobar-model approach, reveals contributions from 𝐾*2(1430)±, 𝐾*2(1980)± and 𝐾*4(2045)± decaying to 𝐾±𝜋0. The two latter states are observed in 𝐽/𝜓 decays for the first time. Two resonance signals decaying to 𝐾+𝐾− are also observed. These contributions cannot be reliably identified and their possible interpretations are discussed. The measured branching fraction 𝐵(𝐽/𝜓→𝐾+𝐾−𝜋0) of (2.88±0.01±0.12)×10−3 is more precise than previous results. Branching fractions for the reported contributions are presented as well. The results of the partial-wave analysis differ significantly from those previously obtained by BESII and BABAR.
The cross section of the process e+e−→K+K− is measured at a number of center-of-mass energies s√ from 2.00 to 3.08 GeV with the BESIII detector at the Beijing Electron Positron Collider (BEPCII). The results provide the best precision achieved so far. A resonant structure around 2.2 GeV is observed in the cross section line shape. A Breit-Wigner fit yields a mass of M=2239.2±7.1±11.3~and a width of Γ=139.8±12.3±20.6 MeV, where the first uncertainties are statistical and the second ones are systematic. In addition, the time-like electromagnetic form factor of the kaon is determined at the individual center-of-mass energy points.
We study the hadronic decays of Λ+c to the final states Σ+η and Σ+η′, using an e+e− annihilation data sample of 567 pb−1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCII collider. We find evidence for the decays Λ+c→Σ+η and Σ+η′ with statistical significance of 2.5σ and 3.2σ, respectively. Normalizing to the reference decays Λ+c→Σ+π0 and Σ+ω, we obtain the ratios of the branching fractions B(Λ+c→Σ+η)B(Λ+c→Σ+π0) and B(Λ+c→Σ+η′)B(Λ+c→Σ+ω) to be 0.35±0.16±0.03 and 0.86±0.34±0.07, respectively. The upper limits at the 90\% confidence level are set to be B(Λ+c→Σ+η)B(Λ+c→Σ+π0)<0.58 and B(Λ+c→Σ+η′)B(Λ+c→Σ+ω)<1.2. Using BESIII measurements of the branching fractions of the reference decays, we determine B(Λ+c→Σ+η)=(0.41±0.19±0.05)% (<0.68%) and B(Λ+c→Σ+η′)=(1.34±0.53±0.21)% (<1.9%). Here, the first uncertainties are statistical and the second systematic. The obtained branching fraction of Λ+c→Σ+η is consistent with the previous measurement, and the branching fraction of Λ+c→Σ+η′ is measured for the first time.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.