Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Alzheimer’s disease (1)
- Complex I (1)
- Complex II (1)
- Glucose (1)
- Microdialysis (1)
- Oxidative phosphorylation (1)
- Stroke (1)
- TgF344-AD (1)
- acetylcholine (1)
- complex I (1)
Institute
ß-Hydroxybutyrate (BHB) is a ketone body formed in high amounts during lipolysis and fasting. Ketone bodies and the ketogenic diet were suggested as neuroprotective agents in neurodegenerative disease. In the present work, we induced transient ischemia in mouse brain by unilaterally occluding the middle cerebral artery for 90 min. BHB (30 mg/kg), given immediately after reperfusion, significantly improved the neurological score determined after 24 h. In isolated mitochondria from mouse brain, oxygen consumption by the complexes I, II and IV was reduced immediately after ischemia but recovered slowly over 1 week. The single acute BHB administration after reperfusion improved complex I and II activity after 24 h while no significant effects were seen at later time points. After 24 h, plasma and brain BHB concentrations were strongly increased while mitochondrial intermediates (citrate, succinate) were unchanged in brain tissue. Our data suggest that a single administration of BHB may improve mitochondrial respiration for 1–2 days but not for later time points. Endogenous BHB formation seems to complement the effects of exogenous BHB administration.
To this day, stroke is the leading cause of death and disability worldwide. Due to increasing age of the world population and poor lifestyle, the incidence is further rising. Besides mechanical thrombectomy as a surgical option, there is a lack of therapeutic options with recombinant tissue plasminogen activator (rt-PA) being the only approved drug for treatment for ischemic stroke. However, there are various problems that make the administration of rt-PA difficult. In particular, it can only be given for ischemic (not hemorrhagic) stroke, and there is a narrow time frame of 4.5 hours after onset of stroke, in which it can be successfully applied. While the success rates of combined thrombectomy with rt-PA are around 60%, less than 5% of patients receive this therapy.
ß-Hydroxybutyrate (BHB) is a ketone body that is formed in high amounts during fasting and lipolysis. Ketone bodes and the ketogenic diet have been shown to have neuroprotective properties in neurodegenerative diseases. In prior work of our group, the ketogenic diet was shown to have beneficial effects in mice after transient ischemia. In the present work, a single dose of BHB was tested for beneficial effects. For this purpose, microdialysis was used to demonstrate that BHB can cross the blood-brain barrier. For the next series of experiments, transient cerebral ischemia was induced in mice for 90 minutes by unilaterally occluding the middle cerebral artery (MCAO) with a silicone-covered filament. Behavioral tests one day after BHB administration showed that the moderate dose of 30 mg/kg, given immediately after reperfusion, improved the neurological score significantly whereas a lower (10 mg/kg) and a higher dose (100 mg/kg) had no effects The main part of the experiments focused on mitochondrial respiration as a potential mechanism of action for BHB. In isolated mitochondria from mouse brain, BHB (1-10 mM) was able to stimulate mitochondrial respiration stronger than pyruvate, but not as strong as succinate.. In the following experiments, MCAO was induced in vivo, and mitochondria were isolated and investigated ex vivo. Experiments were conducted 60 minutes, 24 hours, 72 hours, and 7 days after cerebral ischemia and reperfusion. Besides mitochondrial respiration (normalized to mitochondrial protein content or citrate synthase activity), several other parameters were monitored: the development of bodyweight throughout the experiment, citrate synthase activity, plasma metabolites and behavior to assess motor functions. Three behavioral tests were conducted: first, the Corner test, an experiment for measuring the extent of unilateral movement. Here, if a stroked mouse is put into a narrow corner (30°), it is most likely to turn unilaterally to the right, whereas an unimpaired mouse will turn to both sides randomly. From a total of 10 turns, a laterality index was calculated. Second, in the Chimney test, the mouse walks heads first into a tube. Once it reaches the end, the tube is tipped 90 degrees to stand on the table vertically. Motorically impaired animals have difficulties crawling backwards up to the top of the tube. The experiment was stopped if an animal did not reach the top of the tube within 60 seconds. Third, in the Rotarod test, the mouse is placed on a rotating beam on which it is supposed to walk for at least 60 seconds, and the time when the animal falls off the rotating tube is measured.
All animals that had undergone ischemia showed massive weight loss until 72 hours after reperfusion. Weight loss then stagnated and there was a trend of increasing weight 7 days after reperfusion. The behavioral analysis showed that 24 hours after reperfusion, BHB-treated animals performed significantly better in the Corner test, meaning their moving patterns were more heterogeneous than those of saline-treated animals and in the Chimney test. 72 hours after reperfusion, BHB-treated animals still performed significantly better in the Chimney test, but 7 days after reperfusion, the performances of BHB- and saline-treated animals were no longer different from each other in any of the behavioral tests. In separate experiments, the plasma metabolites glucose, lactate, and pyruvate were changed in the animals that had undergone ischemia but were not affected by BHB administration.
Mitochondrial respiration was tested at four time points after the administration of BHB after reperfusion – 60 minutes, 24 hours, 72 hours, and 7 days after transient cerebral ischemia. 60 minutes later, data showed an increase of oxygen consumption of the complexes I and II. OxPhos was also increased but the effect at this point, did not reach statistical significance. 24 hours after reperfusion, this effect was consolidated: complex I, complex II and OxPhos respiration were significantly improved in the BHB-treated group compared to saline...
Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.