Refine
Year of publication
- 2013 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- CM SAF (1)
- Meteosat Second Generation (1)
- adjustment (1)
- climate monitoring (1)
- cloud type (1)
- evaluation (1)
- homogeneity (1)
- solar surface irradiance (1)
- sunshine duration (1)
- surface incoming direct radiation (1)
Institute
This study presents a method for adjusting long-term climate data records (CDRs) for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS). Recently, a 23-year long (1983–2005) continuous SIS CDR has been generated based on the visible channel (0.45–1 μm) of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005) and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards) were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present) was applied that combines the Standard Normal Homogeneity Test (SNHT) and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN) and about 50 stations of the Global Energy Balance Archive (GEBA) over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of any segment between two break points to the last segment (2006–present). Corrections are applied to the most significant breaks that can be related to satellite changes. This study focuses on the European region, but the methods can be generalized to other regions. To account for seasonal dependence of the mean-shifts the correction was performed independently for each calendar month. In comparison to the ground-based reference the homogenised data record shows an improvement over the original data record in terms of anomaly correlation and bias. In general the method can also be applied for the adjustment of satellite datasets addressing other variables to bridge the gap between CDRs and near-real-time data.
In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG) SEVIRI (Spinning Enhanced Visible and Infrared Imager). The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP) station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.