Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Imaging in LGG (1)
- Low-grade glioma (1)
- Minimal core of imaging (1)
- Response criteria (1)
- adverse reaction (1)
- healthcare worker (1)
- immunization (1)
- novel H1N1 influenza (1)
Institute
- Medizin (3)
Objective: Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo within specialized European centers.
Methods: An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of Neurosurgery.
Results: A total of 128 fully completed surveys were received and analyzed. Most centers (n = 96, 75%) were academic and half of the centers (n = 64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regarding the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 (100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI.
Conclusion: A minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identified. All morphologic images should be obtained in a slice thickness of ≤ 3 mm. No common standard could be obtained regarding advanced MRI protocols and PET.
Importance of the study: We believe that our study makes a significant contribution to the literature because we were able to determine similarities in numerous aspects of LGG imaging. Using the proposed "minimal core of imaging" in clinical routine will facilitate future cooperative studies.
Purpose: The use of the 2009 H1N1 vaccine has generated much debate concerning safety issues among the general population and physicians. Therefore, we investigated the safety of an inactivated monovalent H1N1 pandemic influenza vaccine Methods: We focused on the H1N1 pandemic influenza vaccine Pandemrix(R) and applied a self reporting questionnaire in a population of healthcare workers (HCWs) and medical students at a major university hospital. Results: In total, 4337 individuals were vaccinated, consisting of 3808 HCWs and 529 medical students. The vaccination rate of the employees was higher than 40%.The majority of individuals were vaccinated in November 2009. In total, 291 of the 4337 vaccinations were reported to lead to one or more adverse reactions (6.7%). Local reactions were reported in 3.8%, myalgia and arthralgia in 3.7%, fatigue in 3.7%, headache in 3.1%. Conclusions: Our data together with available data from several national and international institutions points to a safe pandemic influenza vaccine.
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"- exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including including NO2, SO2, nanoparticles, and ozone.