Refine
Document Type
- Article (3)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
Institute
- MPI für Biophysik (3)
- Physik (3)
- Biochemie und Chemie (2)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
Die vorliegende Arbeit beschäftigt sich mit der vergleichenden funktionalen Charakterisierung der E.coli Transporter LacY, FucP und XylE und des Glucose-Transporters GlcP aus Staphylococcus epidermidis sowie funktionsrelevanter Mutanten. Sie katalysieren in vivo den PMF-gekoppelten Zuckertransport und repräsentieren die major facilitator superfamily (MFS), einer der größten Transporter-Familien überhaupt. Die Studien wurden mithilfe einer elektrophysiologischen Methode auf Basis Festkörper-unterstützter Membranen (SSM) durchgeführt. Komplementär dazu wurden radioaktive Transportassays, fluorometrische Messungen, kinetische Simulationen und theoretische Berechnungen auf Basis der 3D-Strukturen durchgeführt. Experimentell bestimmte Zucker- und pH-Abhängigkeiten elektrogener steady-state und pre steady-state Reaktionen wurden verwendet, um ein allgemeingültiges kinetisches Modell aufzustellen.
Insgesamt konnten bei allen Transportern zwei elementare elektrogene Reaktionen identifiziert werden. Eine schnelle Zucker-induzierte Konformationsänderung wurde dem induced fit des Zuckermoleküls zugeordnet. Die Elektrogenität im steady-state wird dagegen durch den langsamen Transfer der negativ geladenen Protonenbindestelle bestimmt. Die für den Symport ratenlimitierende Reaktion ist abhängig von den äußeren Bedingungen wie pH-Werten, Zuckerkonzentrationen, Substrat-Spezies und Membranpotential meist die Konformationsänderung des leeren (P) oder des beladenen (PSH) Carriers, welche die Substratbindestellen im Zuge des Alternating Access über die Membran transferieren. Ein Wechsel zwischen hohen Protonenbindungs-pK-Werten und niedrigen Protonenfreisetzungs-pK-Werten durch weitere lokale Konformationsänderungen ist zentraler Bestandteil des Transportmechanismus. Ein weiterer wichtiger Aspekt ist die Kopplung zwischen Zucker- und Protonen-Translokation, die sich zwischen E.coli Transportern und GlcP strikt unterscheidet. In E.coli Transportern erfolgt eine kooperative Bindung von Zucker und Proton. Zudem erfolgt keine Konformationsänderung im Zucker-gebundenen, unprotonierten Carrier (PS). In GlcP ist die Kopplung erheblich reduziert. Der Transport-Modus selbst ist abhängig von den äußeren Bedingungen. So katalysiert GlcP abhängig vom pH-Gradienten Uniport, Symport oder Antiport.
Die vorliegende Arbeit leistet einen wichtigen Beitrag zum Verständnis des PMF-gekoppelten Zuckertransports und zeigt die Grenzen des für LacY formulierten 6-Zustands-Modells mit nur zwei Konformationsänderungen auf. Ein erweitertes 8-Zustands-Modell mit vier Konformationsänderungen, die unterschiedliche Ratenkonstanten aufweisen können, erklärt sowohl Symport, Antiport als auch Uniport und berücksichtigt zudem die zahlreichen Ergebnisse für LacY aus der Literatur.
Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters.
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are major facilitator superfamily transporters from the solute carrier family 49. Dysregulation of these ubiquitous transporters has been linked to various haematological and neurological disorders. While both FLVCRs were initially proposed to hold a physiological function in heme transport, subsequent studies questioned this notion. Here, we used structural, computational and biochemical methods and conclude that these two FLVCRs function as human choline transporters. We present cryo-electron microscopy structures of FLVCRs in different inward- and outward-facing conformations, captured in the apo state or in complex with choline in their translocation pathways. Our findings provide insights into the molecular framework of choline coordination and transport, largely mediated by conserved cation-π interactions, and further illuminate the conformational dynamics of the transport cycle. Moreover, we identified a heme binding site on the protein surface of the FLVCR2 N-domain, and observed that heme actively drives the conformational transitions of the protein. This auxiliary binding site might indicate a potential regulatory role of heme in the FLVCR2 transport mechanisms. Our work resolves the contested substrate specificity of the FLVCRs, and sheds light on the process of maintaining cellular choline homeostasis at the molecular level.
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2,3,4,5,6,7. Earlier studies concluded that FLVCR1 may function as a haem exporter8,9,10,11,12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14,15,16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Highlights
• Transporter proteins are essential for cellular function, but their functions are poorly characterized due to the lack of direct assays.
• New workflow for transporter functional characterization combines cell-free transporter protein expression and solid supported membrane-based electrophysiology.
• The workflow can be executed in five days.
• Five transporters from SMR, MFS, Nha, and MC families were functionally expressed and analyzed.
• The assay can provide: substrate specificity, kinetic parameters, pH dependency, and mechanistic insights.
Abstract
Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs. The resulting transporters expressed in nanodiscs were incorporated into proteoliposomes and assayed in the presence of different substrates using the surface electrogenic event reader. As a proof of concept, we validated this workflow to express and characterize five diverse transporters: the drug/H+-coupled antiporters EmrE and SugE, the lactose permease LacY, the Na+/H+ antiporter NhaA from Escherichia coli, and the mitochondrial carrier AAC2 from Saccharomyces cerevisiae. For all transporters kinetic parameters, such as KM, IMAX, and pH dependency, were evaluated. This robust and expedite workflow (e.g., can be executed within only five workdays) offers a convenient direct functional assessment of transporter protein activity and has the ability to facilitate applications of transporters in medical and biotechnological research.
Human feline leukemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN, and Fowler syndrome2–7. Earlier studies concluded that FLVCR1 may function as a putative heme exporter8–12, while FLVCR2 was suggested to act as a heme importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14–17. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across human plasma membranes, utilizing a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unraveled the coordination chemistry underlying their substrate interactions. Within the binding pocket of both transporters, we identify fully conserved tryptophan and tyrosine residues holding a central role in the formation of cation-π interactions, essential for choline and ethanolamine selectivity. Our findings not only clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhancing our comprehension of disease-associated mutations that interfere with these vital processes, but also shed light on the conformational dynamics of these MFS-type proteins during the transport cycle.