Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Genetics (1)
- Genome-wide association studies (1)
- SARS-CoV-2 (1)
- Viral infection (1)
- epilepsy (1)
- hotspot loci (1)
- microdeletions (1)
- neurodevelopmental (1)
Institute
- Medizin (4)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Background: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement ‘hotspot’ loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained.
Objective: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype.
Methods: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls.
Results: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10−6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10−12, OR 7.45, 95% CI 4.20–13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10−3,OR 2.85, 95% CI 1.62–4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls.
Conclusions: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.
Background Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement “hotspot” loci. However, deciphering their role outside hotspots and risk assessment by epilepsy sub-type has not been conducted.
Methods We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1,366 patients with Genetic Generalized Epilepsy (GGE) plus two sets of additional unpublished genome-wide microdeletions found in 281 Rolandic Epilepsy (RE) and 807 Adult Focal Epilepsy (AFE) patients, totaling 2,454 cases. These microdeletion sets were assessed in a combined analysis and in sub-type specific approaches against 6,746 ethnically matched controls.
Results When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted-P= 2.00×10-7; OR = 1.89; 95%-CI: 1.51-2.35), where the implicated microdeletions overlapped with rarely deleted genes and those involved in neurodevelopmental processes. Sub-type specific analyses showed that hotspot deletions in the GGE subgroup contribute most of the signal (adjusted-P = 1.22×10-12; OR = 7.45; 95%-CI = 4.20-11.97). Outside hotspot loci, microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted-P = 4.78×10-3; OR = 2.30; 95%-CI = 1.42-3.70), whereas no additional signal was observed for RE and AFE. Still, gene content analysis was able to identify known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes affected in more than one epilepsy sub-type but not in controls.
Conclusions Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor to negligible contribution in the etiology of RE and AFE.
Men and women differ substantially regarding height, weight, and body fat. Interestingly, previous work detecting genetic effects for waist-to-hip ratio, to assess body fat distribution, has found that many of these showed sex-differences. However, systematic searches for sex-differences in genetic effects have not yet been conducted. Therefore, we undertook a genome-wide search for sexually dimorphic genetic effects for anthropometric traits including 133,723 individuals in a large meta-analysis and followed promising variants in further 137,052 individuals, including a total of 94 studies. We identified seven loci with significant sex-difference including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were significant in women, but not in men. Of interest is that sex-difference was only observed for waist phenotypes, but not for height or body-mass-index. We found no evidence for sex-differences with opposite effect direction for men and women. The PPARG locus is of specific interest due to its link to diabetes genetics and therapy. Our findings demonstrate the importance of investigating sex differences, which may lead to a better understanding of disease mechanisms with a potential relevance to treatment options.