Refine
Document Type
- Article (21)
- Conference Proceeding (2)
Language
- English (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- osteoarthritis (6)
- COMP (3)
- Gait analysis (2)
- Joint loading (2)
- cartilage (2)
- extracellular matrix (2)
- gait analysis (2)
- inflammation (2)
- joint contact forces (2)
- musculoskeletal modeling (2)
Institute
- Medizin (23)
Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix
(2017)
Objective: Fibroblast growth factor (FGF) 18 has been shown to increase cartilage volume when injected intra-articularly in animal models of osteoarthritis (OA) and in patients with knee OA (during clinical development of the recombinant human FGF18, sprifermin). However, the exact nature of this effect is still unknown. In this study, we aimed to investigate the effects of sprifermin at the cellular level.
Design: A combination of different chondrocyte culture systems was used and the effects of sprifermin on proliferation, the phenotype and matrix production were evaluated. The involvement of MAPKs in sprifermin signalling was also studied.
Results: In monolayer, we observed that sprifermin promoted a round cell morphology and stimulated both cellular proliferation and Sox9 expression while strongly decreasing type I collagen expression. In 3D culture, sprifermin increased the number of matrix-producing chondrocytes, improved the type II:I collagen ratio and enabled human OA chondrocytes to produce a hyaline extracellular matrix (ECM). Furthermore, we found that sprifermin displayed a ‘hit and run’ mode of action, with intermittent exposure required for the compound to fully exert its anabolic effect. Finally, sprifermin appeared to signal through activation of ERK.
Conclusions: Our results indicate that intermittent exposure to sprifermin leads to expansion of hyaline cartilage-producing chondrocytes. These in vitro findings are consistent with the increased cartilage volume observed in the knees of OA patients after intra-articular injection with sprifermin in clinical studies.
Despite good clinical functional outcome, deficits in gait biomechanics exist 2 years after total hip replacement surgery. The aims of this research were (1) to group patients showing similar gait adaptations to hip osteoarthritis and (2) to investigate the effect of the surgical treatment on gait kinematics and external joint moments. In a secondary analysis, gait data of 51 patients with unilateral hip osteoarthritis were analyzed. A k-means cluster analysis was performed on scores derived via a principal component analysis of the gait kinematics. Preoperative and postoperative datasets were statistically tested between clusters and 46 healthy controls. The first three principal components incorporated hip flexion/extension, pelvic tilt, foot progression angle and thorax tilt. Two clusters were discriminated best by the peak hip extension during terminal stance. Both clusters deviated from healthy controls in spatio-temporal, kinematic and kinetic parameters. The cluster with less hip extension deviated significantly more. The clusters improved postoperatively but differences to healthy controls were still present one year after surgery. A poor preoperative gait pattern in patients with unilateral hip osteoarthritis is associated with worse gait kinematics after total hip replacement. Further research should focus on the identification of patients who can benefit from an adapted or individualized rehabilitation program.
Reduced external knee adduction moments in the second half of stance after total hip replacement have been reported in hip osteoarthritis patients. This reduction is thought to shift the load from the medial to the lateral knee compartment and as such increase the risk for knee osteoarthritis. The knee adduction moment is a surrogate for the load distribution between the medial and lateral compartments of the knee and not a valid measure for the tibiofemoral contact forces which are the result of externally applied forces and muscle forces. The purpose of this study was to investigate whether the distribution of the tibiofemoral contact forces over the knee compartments in unilateral hip osteoarthritis patients 1 year after receiving a primary total hip replacement differs from healthy controls. Musculoskeletal modeling on gait was performed in OpenSim using the detailed knee model of Lerner et al. (2015) for 19 patients as well as for 15 healthy controls of similar age. Knee adduction moments were calculated by the inverse dynamics analysis, medial and lateral tibiofemoral contact forces with the joint reaction force analysis. Moments and contact forces of patients and controls were compared using Statistical Parametric Mapping two-sample t-tests. Knee adduction moments and medial tibiofemoral contact forces of both the ipsi- and contralateral leg were not significantly different compared to healthy controls. The contralateral leg showed 14% higher medial tibiofemoral contact forces compared to the ipsilateral (operated) leg during the second half of stance. During the first half of stance, the lateral tibiofemoral contact force of the contralateral leg was 39% lower and the ratio 32% lower compared to healthy controls. In contrast, during the second half of stance the forces were significantly higher (39 and 26%, respectively) compared to healthy controls. The higher ratio indicates a changed distribution whereas the increased lateral tibiofemoral contact forces indicate a higher lateral knee joint loading in the contralateral leg in OA patients after total hip replacement (THR). Musculoskeletal modeling using a detailed knee model can be useful to detect differences in the load distribution between the medial and lateral knee compartment which cannot be verified with the knee adduction moment.
Background: Approximately one in three patients suffers from preoperative anaemia. Even though haemoglobin is measured before surgery, anaemia management is not implemented in every hospital. Objective: Here, we demonstrate the implementation of an anaemia walk-in clinic at an Orthopedic University Hospital. To improve the diagnosis of iron deficiency (ID), we examined whether reticulocyte haemoglobin (Ret-He) could be a useful additional parameter. Material and Methods: In August 2019, an anaemia walk-in clinic was established. Between September and December 2019, major orthopaedic surgical patients were screened for preoperative anaemia. The primary endpoint was the incidence of preoperative anaemia. Secondary endpoints included Ret-He level, red blood cell (RBC) transfusion rate, in-hospital length of stay and anaemia at hospital discharge. Results: A total of 104 patients were screened for anaemia. Preoperative anaemia rate was 20.6%. Intravenous iron was supplemented in 23 patients. Transfusion of RBC units per patient (1.7 ± 1.2 vs. 0.2 ± 0.9; p = 0.004) and hospital length of stay (13.1 ± 4.8 days vs. 10.6 ± 5.1 days; p = 0.068) was increased in anaemic patients compared to non-anaemic patients. Ret-He values were significantly lower in patients with ID anaemia (33.3 pg [28.6–40.2 pg]) compared to patients with ID (35.3 pg [28.9–38.6 pg]; p = 0.015) or patients without anaemia (35.4 pg [30.2–39.4 pg]; p = 0.001). Conclusion: Preoperative anaemia is common in orthopaedic patients. Our results proved the feasibility of an anaemia walk-in clinic to manage preoperative anaemia. Furthermore, our analysis supports the use of Ret-He as an additional parameter for the diagnosis of ID in surgical patients.
Exogenous adenosine and its metabolite inosine exert anti-inflammatory effects in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We analyzed whether these cells are able to synthesize adenosine/inosine and which adenosine receptors (ARs) contribute to anti-inflammatory effects. The functionality of synthesizing enzymes and ARs was tested using agonists/antagonists. Both OA and RA cells expressed CD39 (converts ATP to AMP), CD73 (converts AMP to adenosine), ADA (converts adenosine to inosine), ENT1/2 (adenosine transporters), all AR subtypes (A1, A2A, A2B and A3) and synthesized predominantly adenosine. The CD73 inhibitor AMPCP significantly increased IL-6 and decreased IL-10 in both cell types, while TNF only increased in RA cells. The ADA inhibitor DAA significantly reduced IL-6 and induced IL-10 in both OA and RA cells. The A2AAR agonist CGS 21680 significantly inhibited IL-6 and induced TNF and IL-10 only in RA, while the A2BAR agonist BAY 60-6583 had the same effect in both OA and RA. Taken together, OA and RA synoviocytes express the complete enzymatic machinery to synthesize adenosine/inosine; however, mainly adenosine is responsible for the anti- (IL-6 and IL-10) or pro-inflammatory (TNF) effects mediated by A2A- and A2BAR. Stimulating CD39/CD73 with simultaneous ADA blockage in addition to TNF inhibition might represent a promising therapeutic strategy.
Background: Gait kinematics after total hip replacement only partly explain the differences in the joint moments in the frontal plane between hip osteoarthritis patients after hip replacement and healthy controls. The goal of this study was to determine if total hip replacement surgery affects radiological leg alignment (Hip-Knee-Shaft-Angle, femoral offset, Neck-Shaft-Angle and varus/valgus alignment) and which of these parameters can explain the joint moments, additionally to the gait kinematics.
Methods: 22 unilateral hip osteoarthritis patients who were scheduled for total hip replacement were included in the study. Preoperatively and 1 year postoperatively all patients had biplanar radiographic examinations and 3D gait analysis.
Results: The operated leg showed significantly (P < 0.05) more varus (1.1°) as well as a larger femoral offset (+ 8 mm) and a larger Hip-Knee-Shaft-Angle (+ 1.3°) after total hip replacement; however no significant differences in the joint moments in the frontal plane compared to healthy controls were found. The hip moment (first half of stance) and the knee moments (first and second half of stance) were mostly determined by the varus/valgus alignment (29% and respectively 36% and 35%). The combination with a kinematic parameter (knee range of motion, foot progression angle) increased the predictive value for the knee moments.
Conclusion: In our patient group the joint moments after total hip replacement did not differ from healthy controls, whereas radiological leg alignment parameters changed significantly after the total hip replacement. A combination of these radiological leg parameters, especially the varus alignment, and the deviating kinematics explain the joint moments in the frontal plane during gait after total hip replacement surgery. For surgeons it is important not to create too much of a structural varus alignment by implanting the new hip joint as varus alignment can increase the knee adduction moment and the risk for osteoarthritis of the medial knee compartment.
Trial registration: This study was retrospectively registered with DRKS (German Clinical Trials Register) under the number DRKS00015053. Registered 1st of August 2018.
The present study considered the entire leg alignment and links static parameters to the external joint moments during gait in patients with hip osteoarthritis. Eighteen patients with unilateral hip osteoarthritis were measured using the EOS® system. Clinical leg alignment and femoral parameters were extracted from the 3D reconstruction of the EOS images. A 3D gait analysis was performed and external knee and hip adduction moments were computed and compared to 18 healthy controls in the same age group. The knee adduction moments of the involved leg were strongly correlated to the femoral offset and the varus/valgus alignment. These parameters alone explained over 50% of the variance in the knee adduction moments. Adding the pelvic drop of the contralateral side increased the model of femoral offset and varus/valgus alignment and explained 78% of the knee adduction moment during the first half of the stance phase. The hip adduction moments were best associated with the hip kinematics and not the leg alignment.
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
The expression of thrombospondin-4 correlates with disease severity in osteoarthritic knee cartilage
(2019)
Osteoarthritis (OA) is a progressive joint disease characterized by a continuous degradation of the cartilage extracellular matrix (ECM). The expression of the extracellular glycoprotein thrombospondin-4 (TSP-4) is known to be increased in injured tissues and involved in matrix remodeling, but its role in articular cartilage and, in particular, in OA remains elusive. In the present study, we analyzed the expression and localization of TSP-4 in healthy and OA knee cartilage by reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and immunoblot. We found that TSP-4 protein expression is increased in OA and that expression levels correlate with OA severity. TSP-4 was not regulated at the transcriptional level but we detected changes in the anchorage of TSP-4 in the altered ECM using sequential protein extraction. We were also able to detect pentameric and fragmented TSP-4 in the serum of both healthy controls and OA patients. Here, the total protein amount was not significantly different but we identified specific degradation products that were more abundant in sera of OA patients. Future studies will reveal if these fragments have the potential to serve as OA-specific biomarkers.
The assessment of knee or hip joint loading by external joint moments is mainly used to draw conclusions on clinical decision making. However, the correlation between internal and external loads has not been systematically analyzed. This systematic review aims, therefore, to clarify the relationship between external and internal joint loading measures during gait. A systematic database search was performed to identify appropriate studies for inclusion. In total, 4,554 articles were identified, while 17 articles were finally included in data extraction. External joint loading parameters were calculated using the inverse dynamics approach and internal joint loading parameters by musculoskeletal modeling or instrumented prosthesis. It was found that the medial and total knee joint contact forces as well as hip joint contact forces in the first half of stance can be well predicted using external joint moments in the frontal plane, which is further improved by including the sagittal joint moment. Worse correlations were found for the peak in the second half of stance as well as for internal lateral knee joint contact forces. The estimation of external joint moments is useful for a general statement about the peak in the first half of stance or for the maximal loading. Nevertheless, when investigating diseases as valgus malalignment, the estimation of lateral knee joint contact forces is necessary for clinical decision making because external joint moments could not predict the lateral knee joint loading sufficient enough. Dependent on the clinical question, either estimating the external joint moments by inverse dynamics or internal joint contact forces by musculoskeletal modeling should be used.