Refine
Document Type
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Physik (5)
We present a lattice QCD calculation of the heavy-light decay constants fB and fBs performed with Nf = 2 maximally twisted Wilson fermions, at four values of the lattice spacing. The decay constants have been also computed in the static limit and the results are used to interpolate the observables between the charmand the infinite-mass sectors, thus obtaining the value of the decay constants at the physical b quark mass. Our preliminary results are fB = 191(14)MeV, fBs = 243(14)MeV, fBs/ fB = 1.27(5). They are in good agreement with those obtained with a novel approach, recently proposed by our Collaboration (ETMC), based on the use of suitable ratios having an exactly known static limit.
n this joint contribution we announce the formation of the "OPEN LATtice initiative", this https URL, to study Stabilised Wilson Fermions (SWF). They are a new avenue for QCD calculations with Wilson-type fermions and we report results on our continued study of this framework: Tuning the clover improvement coefficient, and extending the reach of lattice spacings to a=0.12 fm. We fix the flavor symmetric points mπ=mK=412 MeV at a=0.055,0.064,0.077,0.094,0.12 fm and define the trajectories to the physical point by fixing the trace of the quark mass matrix. Currently our pion mass range extends down to mπ∼200 MeV. We outline our tuning goals and strategy as well as our future planned ensembles. First scaling studies are performed on fπ and mπ. Additionally results of a preliminary continuum extrapolation of mN at the flavor symmetric point are presented. Going further a first determination of the light and strange hadron spectrum chiral dependence is shown, which serves to check the quality of the action for precision measurements. We also investigate other quantities such as flowed gauge observables to study how the continuum limit is approached. Taken together we observe the SWF enable us to perform stable lattice simulations across a large range of parameters in mass, volume and lattice spacing. Pooling resources our new initiative has made our reported progress possible and through it we will share generated gauge ensembles under an open science philosophy.
In this contribution we report the status and plans of the open lattice initiative to generate and share new gauge ensembles using the stabilised Wilson fermion framework. The production strategy is presented in terms of a three stage plan alongside summaries of the data management as well as access policies. Current progress in completing the first stage of generating ensembles at four lattice spacings at the flavor symmetric point is given.
The OpenLat initiative presents its results of lattice QCD simulations using Stabilized Wilson Fermions (SWF) using 2+1 quark flavors. Focusing on the SU(3) flavor symmetric point mπ=mK=412 MeV, four different lattice spacings (a=0.064,0.077,0.094,0.12 fm) are used to perform the continuum limit to study cutoff effects. We present results on light hadron masses; for the determination we use a Bayesian analysis framework with constraints and model averaging to minimize the bias in the analysis.