Refine
Year of publication
Has Fulltext
- yes (47)
Is part of the Bibliography
- no (47)
Keywords
- alirocumab (4)
- acute coronary syndrome (3)
- Cardiovascular biology (2)
- Inflammation (2)
- MitraClip (2)
- TAVI (2)
- biomarker (2)
- 16 segment AHA model (1)
- Acute coronary syndrome (1)
- Akutes Koronarsyndrom (1)
Institute
Coronavirus disease 2019 (COVID-19) spawned a global health crisis in late 2019 and is caused by the novel coronavirus SARS-CoV-2. SARS-CoV-2 infection can lead to elevated markers of endothelial dysfunction associated with higher risk of mortality. It is unclear whether endothelial dysfunction is caused by direct infection of endothelial cells or is mainly secondary to inflammation. Here, we investigate whether different types of endothelial cells are susceptible to SARS-CoV-2. Human endothelial cells from different vascular beds including umbilical vein endothelial cells, coronary artery endothelial cells (HCAEC), cardiac and lung microvascular endothelial cells, or pulmonary arterial cells were inoculated in vitro with SARS-CoV-2. Viral spike protein was only detected in HCAECs after SARS-CoV-2 infection but not in the other endothelial cells tested. Consistently, only HCAEC expressed the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2), required for virus infection. Infection with the SARS-CoV-2 variants B.1.1.7, B.1.351, and P.2 resulted in significantly higher levels of viral spike protein. Despite this, no intracellular double-stranded viral RNA was detected and the supernatant did not contain infectious virus. Analysis of the cellular distribution of the spike protein revealed that it co-localized with endosomal calnexin. SARS-CoV-2 infection did induce the ER stress gene EDEM1, which is responsible for clearance of misfolded proteins from the ER. Whereas the wild type of SARS-CoV-2 did not induce cytotoxic or pro-inflammatory effects, the variant B.1.1.7 reduced the HCAEC cell number. Of the different tested endothelial cells, HCAECs showed highest viral uptake but did not promote virus replication. Effects on cell number were only observed after infection with the variant B.1.1.7, suggesting that endothelial protection may be particularly important in patients infected with this variant.
Aim: Patients with advanced systolic chronic heart failure frequently suffer from progressive functional mitral regurgitation. We report our initial experience in patients with an implanted pulmonary artery pressure (PAP) sensor, who developed severe mitral regurgitation, which was treated with the MitraClip system. We non‐invasively compared changes in PAP values in patients after MitraClip with PAP changes in patients without MitraClip.
Methods and results: Among 28 patients with New York Heart Association III heart failure with implanted PAP sensor for haemodynamic telemonitoring from a single centre, four patients (age 66 ± 6 years, left ventricular ejection fraction 21 ± 3%, and cardiac index 1.8 ± 0.3) received a MitraClip procedure and were compared with 24 patients (age 72 ± 8 years, left ventricular ejection fraction 26 ± 9.9%, and cardiac index 2.0 ± 1.0) without MitraClip procedure in a descriptive manner. Ambulatory PAP values were followed for 90 days in both groups. In comparison with the PAP values 4 weeks before MitraClip procedure, PAP was profoundly reduced in all four patients after 30 days (ΔPAPmean −11 ± 5, ΔPAPdiast −7 ± 3 mmHg, P < 0.02) as well as after 90 days (ΔPAPmean −6.3 ± 6, ΔPAPdiast −1 ± 3 mmHg). Reductions in PAP were accompanied by a profound reduction in N terminal pro brain natriuretic peptide as well as clinical and echocardiographic improvement. When analysing the dynamics with a regression model, reductions in all PAP values were significantly greater after MitraClip compared with conservative haemodynamic monitoring (P < 0.001).
Conclusions: The efficacy of the interventional MitraClip procedure on clinical symptoms can be confirmed by haemodynamic telemonitoring. Thus, daily non‐invasive haemodynamic telemonitoring allows, for the first time, for a continuous assessment of the haemodynamic efficacy of novel therapies in patients with chronic heart failure.
Background: Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C).
Objectives: A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE).
Methods: One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina.
Results: Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081).
Conclusions: Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402).
Background: The introduction of modern troponin assays has facilitated diagnosis of acute myocardial infarction due to improved sensitivity with corresponding loss of specificity. Atrial fibrillation (AF) is associated with elevated levels of troponin. The aim of the present study was to evaluate the diagnostic performance of troponin I in patients with suspected acute coronary syndrome and chronic AF.
Methods: Contemporary sensitive troponin I was assayed in a derivation cohort of 90 patients with suspected acute coronary syndrome and chronic AF to establish diagnostic cut-offs. These thresholds were validated in an independent cohort of 314 patients with suspected myocardial infarction and AF upon presentation. Additionally, changes in troponin I concentration within 3 hours were used.
Results: In the derivation cohort, optimized thresholds with respect to a rule-out strategy with high sensitivity and a rule-in strategy with high specificity were established. In the validation cohort, application of the rule-out cut-off led to a negative predictive value of 97 %. The rule-in cut-off was associated with a positive predictive value of 88 % compared with 71 % if using the 99th percentile cut-off. In patients with troponin I levels above the specificity-optimized threshold, additional use of the 3-hour change in absolute/relative concentration resulted in a further improved positive predictive value of 96 %/100 %.
Conclusions: Troponin I concentration and the 3-hour change in its concentration provide valid diagnostic information in patients with suspected myocardial infarction and chronic AF. With regard to AF-associated elevation of troponin levels, application of diagnostic cut-offs other than the 99th percentile might be beneficial.
Background: Cerebral O2 saturation (ScO2) reflects cerebral perfusion and can be measured noninvasively by near-infrared spectroscopy (NIRS). Objectives: In this pilot study, we describe the dynamics of ScO2 during TAVI in nonventilated patients and its impact on procedural outcome. Methods and Results: We measured ScO2 of both frontal lobes continuously by NIRS in 50 consecutive analgo-sedated patients undergoing transfemoral TAVI (female 58%, mean age 80.8 years). Compared to baseline ScO2 dropped significantly during RVP (59.3% vs. 53.9%, p < .01). Five minutes after RVP ScO2 values normalized (post RVP 62.6% vs. 53.9% during RVP, p < .01; pre 61.6% vs. post RVP 62.6%, p = .53). Patients with an intraprocedural pathological ScO2 decline of >20% (n = 13) had higher EuroSCORE II (3.42% vs. 5.7%, p = .020) and experienced more often delirium (24% vs. 62%, p = .015) and stroke (0% vs. 23%, p < .01) after TAVI. Multivariable logistic regression revealed higher age and large ScO2 drops as independent risk factors for delirium. Conclusions: During RVP ScO2 significantly declined compared to baseline. A ScO2 decline of >20% is associated with a higher incidence of delirium and stroke and a valid cut-off value to screen for these complications. NIRS measurement during TAVI procedure may be an easy to implement diagnostic tool to detect patients at high risks for cerebrovascular complications and delirium.
Background: Patients with acute coronary syndrome (ACS) and concomitant noncoronary atherosclerosis have a high risk of major adverse cardiovascular events (MACEs) and death. The impact of lipid lowering by proprotein convertase subtilisin–kexin type 9 inhibition in such patients is undetermined.
Objectives: This pre-specified analysis from ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) determined whether polyvascular disease influenced risks of MACEs and death and their modification by alirocumab in patients with recent ACS and dyslipidemia despite intensive statin therapy.
Methods: Patients were randomized to alirocumab or placebo 1 to 12 months after ACS. The primary MACEs endpoint was the composite of coronary heart disease death, nonfatal myocardial infarction, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization. All-cause death was a secondary endpoint.
Results: Median follow-up was 2.8 years. Of 18,924 patients, 17,370 had monovascular (coronary) disease, 1,405 had polyvascular disease in 2 beds (coronary and peripheral artery or cerebrovascular), and 149 had polyvascular disease in 3 beds (coronary, peripheral artery, cerebrovascular). With placebo, the incidence of MACEs by respective vascular categories was 10.0%, 22.2%, and 39.7%. With alirocumab, the corresponding absolute risk reduction was 1.4% (95% confidence interval [CI]: 0.6% to 2.3%), 1.9% (95% CI: −2.4% to 6.2%), and 13.0% (95% CI: −2.0% to 28.0%). With placebo, the incidence of death by respective vascular categories was 3.5%, 10.0%, and 21.8%; the absolute risk reduction with alirocumab was 0.4% (95% CI: −0.1% to 1.0%), 1.3% (95% CI: −1.8% to 4.3%), and 16.2% (95% CI: 5.5% to 26.8%).
Conclusions: In patients with recent ACS and dyslipidemia despite intensive statin therapy, polyvascular disease is associated with high risks of MACEs and death. The large absolute reductions in those risks with alirocumab are a potential benefit for these patients. (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab [ODYSSEY OUTCOMES]: NCT01663402)
Alirocumab reduces total nonfatal cardiovascular and fatal events: The ODYSSEY OUTCOMES trial
(2018)
Background: The ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial compared alirocumab with placebo, added to high-intensity or maximum-tolerated statin treatment, after acute coronary syndrome (ACS) in 18,924 patients. Alirocumab reduced the first occurrence of the primary composite endpoint and was associated with fewer all-cause deaths.
Objectives: This pre-specified analysis determined the extent to which alirocumab reduced total (first and subsequent) nonfatal cardiovascular events and all-cause deaths in ODYSSEY OUTCOMES.
Methods: Hazard functions for total nonfatal cardiovascular events (myocardial infarction, stroke, ischemia-driven coronary revascularization, and hospitalization for unstable angina or heart failure) and death were jointly estimated, linked by a shared frailty accounting for patient risk heterogeneity and correlated within-patient nonfatal events. An association parameter also quantified the strength of the linkage between risk of nonfatal events and death. The model provides accurate relative estimates of nonfatal event risk if nonfatal events are associated with increased risk for death.
Results: With 3,064 first and 5,425 total events, 190 fewer first and 385 fewer total nonfatal cardiovascular events or deaths were observed with alirocumab compared with placebo. Alirocumab reduced total nonfatal cardiovascular events (hazard ratio: 0.87; 95% confidence interval: 0.82 to 0.93) and death (hazard ratio: 0.83; 95% confidence interval: 0.71 to 0.97) in the presence of a strong association between nonfatal and fatal event risk.
Conclusions: In patients with ACS, the total number of nonfatal cardiovascular events and deaths prevented with alirocumab was twice the number of first events prevented. Consequently, total event reduction is a more comprehensive metric to capture the totality of alirocumab clinical efficacy after ACS.
Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome.
Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death.
Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined with achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend).
Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low.
Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402.
Background: Wnt signaling controls the balance between stem cell proliferation and differentiation and body patterning throughout development. Previous data demonstrated that non-canonical Wnts (Wnt5a, Wnt11) increased cardiac gene expression of circulating endothelial progenitor cells (EPC) and bone marrow-derived stem cells cultured in vitro. Since previous studies suggested a contribution of the protein kinase C (PKC) family to the Wnt5a-induced signalling, we investigated which PKC isoforms are activated by non-canonical Wnt5a in human EPC. Methodology/Principal Findings: Immunoblot experiments demonstrated that Wnt5a selectively activated the novel PKC isoform, PKC delta, as evidenced by phosphorylation and translocation. In contrast, the classical Ca2+-dependent PKC isoforms, PKC alpha and beta2, and one of the other novel PKC isoforms, PKC epsilon, were not activated by Wnt5a. The PKC delta inhibitor rottlerin significantly blocked co-culture-induced cardiac differentiation in vitro, whereas inhibitors directed against the classical Ca2+-dependent PKC isoforms or a PKC epsilon-inhibitory peptide did not block cardiac differentiation. In accordance, EPC derived from PKC delta heterozygous mice exhibited a significant reduction of Wnt5a-induced cardiac gene expression compared to wild type mice derived EPC. Conclusions/Significance: These data indicate that Wnt5a enhances cardiac gene expressions of EPC via an activation of PKC delta.
Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol
(2010)
Aims: Circulating endothelial progenitor cells (EPC), involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data. Methods and Results: In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS)), EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45dimCD34+ cells were quantified for KDR. A minimum of 100 CD34+ events were collected. For comparison, CD45+CD34+ and CD45-CD34+ were analysed simultaneously. The number of CD45dimCD34+KDR+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend). An inverse correlation of CD45dimCD34+KDR+ with disease activity (r = -0.475, p<0.001) was confirmed. Only CD45dimCD34+KDR+ correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005). In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45dimCD34+KDR+ EPC (p<0.05). CD45+CD34+KDR+ and CD45-CD34+KDR+ were indifferent between the three groups. Conclusion: Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous findings with respect to the correlation of EPC with disease activity and the increase of EPC during statin therapy. The data of this study show the CD45dim fraction to harbour EPC.