Refine
Document Type
- Article (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- mitochondria (2)
- CoxVa (1)
- Mgm1p (1)
- TIM23 (1)
- bioenergetics (1)
- crista junction (1)
- cristae (1)
- membrane protein (1)
- membrane protein complex (1)
- membrane structure (1)
Institute
Background Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1 -/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.
TIM23-mediated insertion of transmembrane alpha-helices into the mitochondrial inner membrane
(2011)
While overall hydrophobicity is generally recognized as the main characteristic of transmembrane (TM) alpha-helices, the only membrane system for which there are detailed quantitative data on how different amino acids contribute to the overall efficiency of membrane insertion is the endoplasmic reticulum (ER) of eukaryotic cells. Here, we provide comparable data for TIM23-mediated membrane protein insertion into the inner mitochondrial membrane of yeast cells. We find that hydrophobicity and the location of polar and aromatic residues are strong determinants of membrane insertion. These results parallel what has been found previously for the ER. However, we see striking differences between the effects elicited by charged residues flanking the TM segments when comparing the mitochondrial inner membrane and the ER, pointing to an unanticipated difference between the two insertion systems. Keywords: CoxVa , membrane protein , Mgm1p , mitochondria , TIM23
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.
Mitochondrien sind die Kraftwerke unserer Zellen. In ihnen findet die Zellatmung statt, die unseren Körper mit lebenswichtiger Energie versorgt. Zusätzlich teilen sich die Zellorganellen und verschmelzen wieder miteinander im Minutentakt. Was aber passiert, wenn Teile dieses dynamischen Geflechts Defekte aufweisen? Die Antwort dazu könnte ein Protein sein, das auf zwei verschiedene Weisen in die Mitochondrien-Membranen eingebaut wird. Liegt keine kurze Form des Proteins vor, ist das ein Hinweis dafür, dass die Organellen defekt sind. Die Mitochondrien verbrennen die mit der Nahrung zugeführten Kohlenhydrate und Fette unter Verbrauch von Sauerstoff zu Kohlendioxid und Wasser. Bei diesem Vorgang, der Zellatmung, wird über eine Reihe von Proteinkomplexen ein elektrochemisches Potenzial aufgebaut, das zur Produktion des Energieträgers ATP (Adenosintriphosphat) genutzt wird. ATP kann aus den Mitochondrien abtransportiert werden und steht somit als eine Art Treibstoff für alle Stoffwechselprozesse zur Verfügung. Die Arbeit der Mitochondrien ist der Hauptgrund für unseren täglichen Sauerstoffbedarf. Außerdem tragen die Nano-Kraftwerke der Zelle dazu bei, unsere Körpertemperatur auf 37 °C aufrechtzuerhalten. Aufgrund dieser zentralen Funktionen ist es nicht verwunderlich, dass eine Reihe von Krankheiten beim Menschen durch den Funktionsverlust von Mitochondrien verursacht oder beeinflusst wird. Das sind in erster Linie neurologische oder muskuläre Erkrankungen, aber auch Diabetes, Fettleibigkeit, verschiedene Formen von Krebs und Alterungsprozesse. Folglich ist es von immenser Bedeutung zu verstehen, wie Mitochondrien funktionieren, wie sie ihre Funktionalität aufrechterhalten und gegebenenfalls repariert oder entsorgt werden können. Dem können wir am Wissenschaftsstandort Frankfurt hervorragend nachgehen, da sich einige international ausgewiesene Forschungsgruppen in den Fachbereichen Medizin, Biologie, Chemie und am Max-Planck-Institut für Biophysik mit verschiedenen Aspekten der mitochondrialen Biologie befassen. In zahlreichen interdisziplinären Kooperationen wird so versucht, dieses komplexe System besser zu verstehen.
Crista junctions (CJs) are important for mitochondrial organization and function, but the molecular basis of their formation and architecture is obscure. We have identified and characterized a mitochondrial membrane protein in yeast, Fcj1 (formation of CJ protein 1), which is specifically enriched in CJs. Cells lacking Fcj1 lack CJs, exhibit concentric stacks of inner membrane in the mitochondrial matrix, and show increased levels of F1FO–ATP synthase (F1FO) supercomplexes. Overexpression of Fcj1 leads to increased CJ formation, branching of cristae, enlargement of CJ diameter, and reduced levels of F1FO supercomplexes. Impairment of F1FO oligomer formation by deletion of its subunits e/g (Su e/g) causes CJ diameter enlargement and reduction of cristae tip numbers and promotes cristae branching. Fcj1 and Su e/g genetically interact. We propose a model in which the antagonism between Fcj1 and Su e/g locally modulates the F1FO oligomeric state, thereby controlling membrane curvature of cristae to generate CJs and cristae tips.
Mitochondrial cristae morphology is highly variable and altered under numerous pathological conditions. The protein complexes involved are largely unknown or only insufficiently characterized. Using complexome profiling we identified apolipoprotein O (APOO) and apolipoprotein O-like protein (APOOL) as putative components of the Mitofilin/MINOS protein complex which was recently implicated in determining cristae morphology. We show that APOOL is a mitochondrial membrane protein facing the intermembrane space. It specifically binds to cardiolipin in vitro but not to the precursor lipid phosphatidylglycerol. Overexpression of APOOL led to fragmentation of mitochondria, a reduced basal oxygen consumption rate, and altered cristae morphology. Downregulation of APOOL impaired mitochondrial respiration and caused major alterations in cristae morphology. We further show that APOOL physically interacts with several subunits of the MINOS complex, namely Mitofilin, MINOS1, and SAMM50. We conclude that APOOL is a cardiolipin-binding component of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. Our findings further assign an intracellular role to a member of the apolipoprotein family in mammals.
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span.
Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape.
Aging of biological systems is accompanied by degeneration of mitochondrial functions. Different pathways are active to counteract the processes which lead to mitochondrial dysfunction. Mitochondrial dynamics, the fission and fusion of mitochondria, is one of these quality control pathways. Mitophagy, the controlled degradation of mitochondria, is another one. Here we show that these pathways are linked. A double deletion mutant of Saccharomyces cerevisiae in which two essential components of the fission and fusion machinery, Dnm1 and Mgm1, are simultaneously ablated, contain wild-type like filamentous mitochondria, but are characterized by impaired respiration, an increased sensitivity to different stressors, increased mitochondrial protein carbonylation, and a decrease in mitophagy and replicative lifespan. These data show that a balanced mitochondrial dynamics and not a filamentous mitochondrial morphotype per se is the key for a long lifespan and demonstrate a cross-talk between two different mitochondrial quality control pathways.
The inner boundary and the cristae membrane are connected by pore-like structures termed crista junctions (CJs). The MICOS complex is required for CJ formation and enriched at CJs. Here, we address the roles of the MICOS subunits Mic27 and Mic10. We observe a positive genetic interaction between Mic27 and Mic60 and deletion of Mic27 results in impaired formation of CJs and altered cristae membrane curvature. Mic27 acts in an antagonistic manner to Mic60 as it promotes oligomerization of the F1FO-ATP synthase and partially restores CJ formation in cells lacking Mic60. Mic10 impairs oligomerization of the F1FO-ATP synthase similar to Mic60. Applying complexome profiling, we observed that deletion of Mic27 destabilizes the MICOS complex but does not impair formation of a high molecular weight Mic10 subcomplex. Moreover, this Mic10 subcomplex comigrates with the dimeric F1FO-ATP synthase in a Mic27-independent manner. Further, we observed a chemical crosslink of Mic10 to Mic27 and of Mic10 to the F1FO-ATP synthase subunit e. We corroborate the physical interaction of the MICOS complex and the F1FO-ATP synthase. We propose a model in which part of the F1FO-ATP synthase is linked to the MICOS complex via Mic10 and Mic27 and by that is regulating CJ formation.