Refine
Document Type
- Article (7)
- Preprint (6)
- Doctoral Thesis (1)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- natural scenes (2)
- neuronal populations (2)
- primary visual cortex (2)
- stimulus encoding (2)
- visual attention (2)
- Bayesian model (1)
- adaptation (1)
- functional magnetic resonance imaging (1)
- hysteresis (1)
- intrinsic plasticity (1)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (11)
- Ernst Strüngmann Institut (10)
- MPI für Hirnforschung (7)
- Biowissenschaften (1)
- Informatik (1)
- Medizin (1)
- Physik (1)
Even in the absence of sensory stimulation the brain is spontaneously active. This background “noise” seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN), which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural responses can be accounted for by a simple deterministic recurrent neural network which learns a predictive model of its sensory environment via a combination of generic neural plasticity mechanisms.
Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural models. In the present thesis, we introduce several recurrent network models of threshold units that combine spike timing dependent plasticity with homeostatic plasticity mechanisms like intrinsic plasticity or synaptic normalization. We investigate how these different forms of plasticity shape the dynamics and computational properties of recurrent networks. The networks receive input sequences composed of different symbols and learn the structure embedded in these sequences in an unsupervised manner. Information is encoded in the form of trajectories through a high-dimensional state space reminiscent of recent biological findings on cortical coding. We find that these self-organizing plastic networks are able to represent and "understand" the spatio-temporal patterns in their inputs while maintaining their dynamics in a healthy regime suitable for learning. The emergent properties are not easily predictable on the basis of the individual plasticity mechanisms at work. Our results underscore the importance of studying the interaction of different forms of plasticity on network behavior.
Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural network models. Here we introduce SORN, a self-organizing recurrent network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN learns to encode information in the form of trajectories through its high-dimensional state space reminiscent of recent biological findings on cortical coding. All three forms of plasticity are shown to be essential for the network's success. Keywords: synaptic plasticity, intrinsic plasticity, recurrent neural networks, reservoir computing, time series prediction
Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain “decide” what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function).
In order to investigate the involvement of primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multiunit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of working memory contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding.
Parallel multisite recordings in the visual cortex of trained monkeys revealed that the responses of spatially distributed neurons to natural scenes are ordered in sequences. The rank order of these sequences is stimulus-specific and maintained even if the absolute timing of the responses is modified by manipulating stimulus parameters. The stimulus specificity of these sequences was highest when they were evoked by natural stimuli and deteriorated for stimulus versions in which certain statistical regularities were removed. This suggests that the response sequences result from a matching operation between sensory evidence and priors stored in the cortical network. Decoders trained on sequence order performed as well as decoders trained on rate vectors but the former could decode stimulus identity from considerably shorter response intervals than the latter. A simulated recurrent network reproduced similarly structured stimulus-specific response sequences, particularly once it was familiarized with the stimuli through non-supervised Hebbian learning. We propose that recurrent processing transforms signals from stationary visual scenes into sequential responses whose rank order is the result of a Bayesian matching operation. If this temporal code were used by the visual system it would allow for ultrafast processing of visual scenes.
Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. Here, we hypothesized that attentional and contextual top-down signals interact in V1, in a manner that primarily benefits the representation of natural visual stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity from population responses evoked by natural scenes but, critically, not by synthetic stimuli in which higher-order statistical regularities were eliminated. Population analysis revealed that neuronal responses converged to a low dimensional subspace for natural but not for synthetic images. Critically, we determined that the attentional enhancement in stimulus decodability was captured by the dominant low dimensional subspace, suggesting an alignment between the attentional and natural stimulus variance. The alignment was pronounced for late evoked responses but not for early transient responses of V1 neurons, supporting the notion that top-down feedback was required. We argue that attention and perception share top-down pathways, which mediate hierarchical interactions optimized for natural vision.
Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We used optogenetics to generate depolarizing currents in pyramidal neurons of cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. Cortex transformed constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increased the strength and frequency of synchronization. Slow, symmetric excitation profiles revealed hysteresis of power and frequency. Crucially, white-noise input sequences enabled causal analysis of network transmission, establishing that cortical resonance selectively transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncovered a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission.
The brain adapts to the sensory environment. For example, simple sensory exposure can modify the response properties of early sensory neurons. How these changes affect the overall encoding and maintenance of stimulus information across neuronal populations remains unclear. We perform parallel recordings in the primary visual cortex of anesthetized cats and find that brief, repetitive exposure to structured visual stimuli enhances stimulus encoding by decreasing the selectivity and increasing the range of the neuronal responses that persist after stimulus presentation. Low-dimensional projection methods and simple classifiers demonstrate that visual exposure increases the segregation of persistent neuronal population responses into stimulus-specific clusters. These observed refinements preserve the representational details required for stimulus reconstruction and are detectable in post-exposure spontaneous activity. Assuming response facilitation and recurrent network interactions as the core mechanisms underlying stimulus persistence, we show that the exposure-driven segregation of stimulus responses can arise through strictly local plasticity mechanisms, also in the absence of firing rate changes. Our findings provide evidence for the existence of an automatic, unguided optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.
The brain adapts to the sensory environment. For example, simple sensory exposure can modify the response properties of early sensory neurons. How these changes affect the overall encoding and maintenance of stimulus information across neuronal populations remains unclear. We perform parallel recordings in the primary visual cortex of anesthetized cats and find that brief, repetitive exposure to structured visual stimuli enhances stimulus encoding by decreasing the selectivity and increasing the range of the neuronal responses that persist after stimulus presentation. Low-dimensional projection methods and simple classifiers demonstrate that visual exposure increases the segregation of persistent neuronal population responses into stimulus-specific clusters. These observed refinements preserve the representational details required for stimulus reconstruction and are detectable in postexposure spontaneous activity. Assuming response facilitation and recurrent network interactions as the core mechanisms underlying stimulus persistence, we show that the exposure-driven segregation of stimulus responses can arise through strictly local plasticity mechanisms, also in the absence of firing rate changes. Our findings provide evidence for the existence of an automatic, unguided optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.