Refine
Year of publication
Language
- English (586)
Has Fulltext
- yes (586)
Is part of the Bibliography
- no (586)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (584)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
(2016)
We extract the e+e− →π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aππ,LO μ (600–900 MeV) = (368.2 ±2.5stat±3.3sys) ·10−10, which is between the corresponding values using the BaBar or KLOE data.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
We search for the di-photon decay of a light pseudoscalar axion-like particle, a, in radiative J/ψ decays, using 10 billion J/ψ events collected with the BESIII detector. We find no evidence of a signal and set upper limits at the 95% confidence level on the product branching fraction B(J/ψ→γa)×B(a→γγ) and the axion-like particle photon coupling constant gaγγ in the ranges of (3.7−48.5)×10−8 and (2.2−101.8)×10−4 GeV−1, respectively, for 0.18≤ma≤2.85 GeV/c2. These are the most stringent limits to date in this mass region.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
Using a 3.19 fb−1 data sample collected at an 𝑒+𝑒− center-of-mass energy of 𝐸cm=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay 𝐷+𝑠→𝜇+𝜈𝜇 to be ℬ𝐷+𝑠→𝜇+𝜈𝜇=(5.49±0.16stat±0.15syst)×10−3. Combining our branching fraction with the masses of the 𝐷+𝑠 and 𝜇+ and the lifetime of the 𝐷+𝑠, we determine 𝑓𝐷+𝑠|𝑉𝑐𝑠|=246.2±3.6stat±3.5syst MeV. Using the 𝑐→𝑠 quark mixing matrix element |𝑉𝑐𝑠| determined from a global standard model fit, we evaluate the 𝐷+𝑠 decay constant 𝑓𝐷+𝑠=252.9±3.7stat±3.6syst MeV. Alternatively, using the value of 𝑓𝐷+𝑠 calculated by lattice quantum chromodynamics, we find |𝑉𝑐𝑠|=0.985±0.014stat±0.014syst. These values of ℬ𝐷+𝑠→𝜇+𝜈𝜇, 𝑓𝐷+𝑠|𝑉𝑐𝑠|, 𝑓𝐷+𝑠 and |𝑉𝑐𝑠| are each the most precise results to date.
By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction of ψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be 1.49±0.22±0.25, which is consistent with the previous result of BaBar at a comparable precision level.
We report the first observation of the semimuonic decay 𝐷+→𝜔𝜇+𝜈𝜇 using an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of 3.773 GeV. The absolute branching fraction of the 𝐷+→𝜔𝜇+𝜈𝜇 decay is measured to be ℬ𝐷+→𝜔𝜇+𝜈𝜇=(17.7±1.8stat±1.1syst)×10−4. Its ratio with the world average value of the branching fraction of the 𝐷+→𝜔𝑒+𝜈𝑒 decay probes lepton flavor universality and it is determined to be ℬ𝐷+→𝜔𝜇+𝜈𝜇/ℬPDG 𝐷+→𝜔𝑒+𝜈𝑒=1.05±0.14, in agreement with the standard model expectation within one standard deviation.