### Refine

#### Has Fulltext

- yes (13)

#### Is part of the Bibliography

- no (13)

#### Keywords

- Kollision (2)
- Kollisionen des schweren Ions (2)
- collision (2)
- heavy ion collision (2)
- heavy-ion collisions (2)
- schwere Ion-Kollision (2)
- statistical coalescence model (2)
- statistisches Fusionsmodell (2)
- Charm Produktion (1)
- Charmonium (1)

#### Institute

Charmonium production and suppression in heavy-ion collisions at relativistic energies is investigated within di erent models, i.e. the comover absorption model, the threshold suppression model, the statistical coalescence model and the HSD transport approach. In HSD the charmonium dissociation cross sections with mesons are described by a simple phase-space parametrization including an e ective coupling strength |Mi|2 for the charmonium states i =Xc,J/psi, psi'. This allows to include the backward channels for charmonium reproduction by DD channels which are missed in the comover absorption and threshold suppression model employing detailed balance without introducing any new parameters. It is found that all approaches yield a reasonable description of J/psi suppression in S+U and Pb+Pb collisions at SPS energies. However, they di er significantly in the psi'/J/psi ratio versus centrality at SPS and especially at RHIC energies. These pronounced differences can be exploited in future measurements at RHIC to distinguish the hadronic rescattering scenarios from quark coalescence close to the QGP phase boundary.

The study of hidden charm production is an important part of the heavy ion program. The standard approach to this problem [1] assumes that c¯c bound states are created only at the initial stage of the reaction and then partially destroyed at later stages due to interactions with the medium [2, 3, 4].

The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2 4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.

The J/psi yield at midrapidity at the top RHIC (relativistic heavy ion collider) energy is calculated within the statistical coalescence model, which assumes charmonium formation at the late stage of the reaction from the charm quarks and antiquarks created earlier in hard parton collisions. The results are compared to the new PHENIX data and to predictions of the standard models, which assume formation of charmonia exclusively at the initial stage of the reaction and their subsequent suppression. Two versions of the suppression scenario are considered. One of them assumes gradual charmonium suppression by comovers, while the other one supposes that the suppression sets in abruptly due to quark-gluon plasma formation. Surprisingly, both versions give very similar results. In contrast, the statistical coalescence model predicts a few times larger J/psi yield in the most central collisions.

The high E(T) drop of J / psi to Drell-Yan ratio from the statistical c anti-c coalescence model
(2002)

The dependence of the J/psi yield on the transverse energy ET in heavy ion collisions is considered within the statistical c¯c coalescence model. The model fits the NA50 data for Pb+Pb collisions at the CERN SPS even in the high-ET region (ET >< 100 GeV). Here ET -fluctuations and ET -losses in the dimuon event sample naturally create the celebrated drop in the J/psi to Drell-Yan ratio.

Statistical coalescence model analysis of J / psi production in Pb + Pb collisions at 158 A GeV
(2001)

Production of J/psi mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experi- mental data of the NA50 Collaboration for Pb+Pb collisions at 158 A·GeV in a wide centrality range, including the so called anomalous suppression domain. The model description of the J/ psi data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.

The recently published experimental dependence of the J/psi suppression pattern in Pb+Pb collisions at the CERN SPS on the energy of zero degree calorimeter EZDC are analyzed. It is found that the data obtained within the minimum bias analysis (using theoretical Drell-Yan ) are at variance with the previously published experimental dependence of the same quantity on the transversal energy of neutral hadrons ET . The discrepancy is related to the moderate centrality region: 100 << Np << 200 (Np is the number of nucleon participants). This could result from systematic experimental errors in the minimum bias sample. A possible source of the errors may be contamination of the minimum bias sample by o -target interactions. The data obtained within the standard analysis (using measured Drell-Yan multiplicity) are found to be much less sensitive to the contamination.

The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.

The equation of state for the pion gas is analyzed within the third virial approximation. The second virial coeffcient is found from the pi pi -scattering data, while the third one is considered as a free parameter. The proposed model leads to a first-order phase transition from the pion gas to a more dense phase at the temperature Tpt < 136 MeV. Due to relatively low temperature this phase transition cannot be related to the deconfinement. This suggests that a new phase of hadron matter hot pion liquid may exist.