Refine
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
Institute
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report new STAR measurements of the single-spin asymmetries 𝐴𝐿 for 𝑊+ and 𝑊− bosons produced in polarized proton-proton collisions at √𝑠=510 GeV as a function of the decay-positron and decay-electron pseudorapidity. The data were obtained in 2013 and correspond to an integrated luminosity of 250 pb−1. The results are combined with previous results obtained with 86 pb−1. A comparison with theoretical expectations based on polarized lepton-nucleon deep-inelastic scattering and prior polarized proton-proton data suggests a difference between the ¯𝑢 and ¯𝑑 quark helicity distributions for 0.05<𝑥<0.25. In addition, we report new results for the double-spin asymmetries 𝐴𝐿𝐿 for 𝑊±, as well as 𝐴𝐿 for 𝑍/𝛾* production and subsequent decay into electron-positron pairs.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report measurements of the longitudinal double-spin asymmetry, ALL, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy s√ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 ≲x≲ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the x dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.
We present a measurement of inclusive J /ψ production at mid-rapidity (|y| < 1) in p+p collisions at a center-of-mass energy of √s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for J /ψ as a function of transverse momentum (p T ) for 0 < p T < 14 GeV/c and the total cross section are reported and compared to calculations from the color evaporation model and the non-relativistic Quantum Chromodynamics model. The dependence of J /ψ relative yields in three p T intervals on charged-particle multiplicity at mid-rapidity is measured for the first time in p+p collisions at √s = 200 GeV and compared with that measured at √s = 7 TeV, PYTHIA8 and EPOS3 Monte Carlo generators, and the Percolation model prediction.
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP.
We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at √sNN = 200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon– bound state. These predictions are based on the proton– interaction extracted from (2 + 1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton– bound system with a binding energy of ∼ 27 MeV.