Refine
Document Type
- Article (4)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 µm as well as particle size distributions (0.4–23 µm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 µm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~24% outside vortex). This is most likely due to a strongly increased fraction of meteoritic material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoritic smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 µm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation.
Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign
(2009)
We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL) above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, horizontal inmixing across the subtropical tropopause, and horizontal transport across the subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin. When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights, increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10 and 25° N latitude where isentropic mixing between these two regions may occur.
Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign
(2010)
We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO<sub>2</sub> and N<sub>2</sub>O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O<sub>3</sub> with the Fast Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL) above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, horizontal inmixing across the subtropical tropopause, and horizontal transport across the subtropical barrier. Except for the flight of 13 August, distinct minima in CO<sub>2</sub> indicate convective outflow of boundary layer air in the TTL. The CO<sub>2</sub> profiles show that the level of main convective outflow was mostly located between 350 and 360 K, and for 11 August reached up to 370 K. While the CO<sub>2</sub> minima indicate quite significant convective influence, the O<sub>3</sub> profiles suggest that the observed convective signatures were mostly not fresh, but of older origin. When compared with the mean O<sub>3</sub> profile measured during a previous campaign over Darwin in November 2005, the O<sub>3</sub> minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O<sub>3</sub> mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO<sub>2</sub> profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N<sub>2</sub>O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights, increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N<sub>2</sub>O and O<sub>3</sub> between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10 and 25° N latitude where isentropic mixing between these two regions may occur.
Hauptanliegen dieser Arbeit ist es, statistische Zusammenhänge zwischen der Nord-Atlantik-Oszillation (NAO) und der bodennahen Lufttemperatur in Europa zu untersuchen. Dazu wurden zunächst die Korrelationskoeffizienten nach Pearson, Kendall, Spearman und die Transinformation berechnet, sowie die zugehörigen Signifikanzen abgeschätzt. Diese Analysen wurden auch zeitlich gleitend durchgeführt, um mögliche Veränderungen im Einfluß der NAO auf die Temperatur nachweisen zu können. Weiterhin wurde mit Hilfe der selektiven Zeitreihenzerlegung nach signifikanten, charakteristischen zeitlichen Strukturen sowohl in der NAO als auch in den Zeitreihen der Lufttemperatur gesucht: Trend, glatte, saisonale, harmonische Komponente und Rauschen. Zweck dieser Untersuchung war es, gegebenenfalls gleichartige zeitliche Strukturen in der NAO und Temperatur zu finden, um den Zusammenhang zwischen NAO und Temperatur näher beschreiben zu können. Die Untersuchungen wurden fur den Zeitraum von 1871 bis 1990 in monatlicher, saisonaler und jährlicher Auflösung auf Basis von Zeitreihen der mittleren monatlichen Lufttemperatur 41 europäischer WMO- (World Meteorological Organization) Stationen, sowie zwei unterschiedlich definierten NAO-Index-Zeitreihen, die ebenfalls in Monatsmitteln vorlagen, durchgeführt. Ergänzend wurde auf einen globalen Datensatz von Temperaturflächenmitteln zuruckgegriffen, um auch aus globaler Sicht Aussagen uber Zusammenhänge zwischen NAO und bodennaher Lufttemperatur zu erhalten. Die Untersuchungen bezogen sich hierbei auf das Zeitintervall von 1892 bis 1994. Der Zusammenhang zwischen den in Europa beobachteten Temperaturen und der NAO ist linearer Natur und vor allem in den Wintermonaten ausgeprägt. Ein maximaler Zusammenhang findet sich im nordeuropäischen Winter mit einer erklärten Varianz um 40%. Ein Vergleich von extrem kalten Wintern mit der NAO hat gezeigt, daß extreme Kältereignisse nur bei einer schwachen NAO (negativer NAO-Index) auftreten. Im Jahresgang findet eine Verschiebung des durch die NAO beeinflußten Gebietes in Ost-West-Richtung statt. Das Minimum des Zusammenhanges besteht im Sommer bei maximaler Ost-Verschiebung. Weiterhin ist der Einfluß der NAO auf die Temperatur stark zonal ausgeprägt. Es besteht ein Nord-Süd-Gefälle von positiver Korrelation im Norden zu negativer im Süden Europas. Zu diesem Ergebnis führte sowohl die Analyse der Europadaten wie des globalen Datensatzes. Der Einfluß der NAO auf die Temperatur ist nicht stationär; seit Beginn dieses Jahrhunderts hat sich dieser zunehmend ostwärts verlagert. Ein signifikanter Trend konnte in den Indexreihen der NAO aber nicht nachgewiesen werden. Signifikante zeitliche Strukturen der NAO konnten im Bereich der niederfrequenten und auch hochfrequenten Variabilität gefunden werden. Die Winter-NAO (mittlerer Indexwert von Dezember bis Februar) zeigt insbesondere einen in den Wintertemperaturen (Temperaturmittel der Monate Dezember bis Februar) gleichartigen niederfrequenten Verlauf, der durch Polynome vierter und fünfter Ordnung beschrieben werden kann. Im Bereich der hochfrequenten Variabilität konnte mit Ausnahme der Sommer- und Herbstdaten in allen Indexreihen der NAO eine harmonische Schwingung mit einer Periode von etwa 7 Jahren detektiert werden. Die gleiche Schwingung findet sich in den Wintertemperaturen West- und Mitteleuropas.
Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 μm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~67% inside vortex, ~24% outside vortex). This is most likely due to a strongly increased fraction of meteoric material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoric smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation.
Since the discovery of the ozone hole [Farman et al., 1985], the dynamics of the stratosphere and the transport of anthropogenic trace gases from the surface to the higher atmosphere has come into the focus of interest. In the tropics, air rises high into the stratosphere and is transported poleward. Trace gases like the CFCs1, photochemically stable in the troposphere, are thus transported into regions where they are photolyzed. The products of the photolysis reactions (eg. Cl, Br) interact in the catalytic ozone cycles and lead to enhanced ozone depletion. Regarding the transport of trace gases, the so-called lowermost stratosphere (LMS) is a very interesting region, where the troposphere and the stratosphere directly interact and air masses out of both regions are mixed. It is the lowest part of the stratosphere between the tropopause and the 380 K isentrope. Tropospheric air can enter this region directly via isentropic transport across the extra-tropical tropopause whereas stratospheric air descends across the 380 K isentrope via the mean meridional circulation. Stratosphere-troposphere exchange (STE) controls the chemical composition of the LMS as well as of the tropopause region and thus has an important effect on the radiative and chemical balance of these regions and the climate system. STE exhibits a strong seasonality [Holton et al., 1995]. While downwelling of stratospheric air across the 380 K isentrope is the dominant process in winter, troposphere-to-stratosphere transport (TST) gains importance in summer, when the downwelling from the stratosphere is only weak. Isentropic transport across the extra-tropical tropopause occurs in regions where the tropopause is strongly disturbed and is connected to tropopause folds, streamer events, frontal zones, polar and subtropical jets, warm conveyor belts and cut-off low systems. A short introduction into STE, the LMS region, and methods to study atmospheric transport is given in Chapter 1. One useful tool to analyse the motions of air and transport processes are longlived trace gases. Since the lifetimes of these tracers are longer than the time scale of the transport processes they are involved in, the distribution of tracers in the atmosphere is mostly determined by dynamics. In the context of this thesis, measurements of such long-lived tracers were performed and used to study transport into the LMS region in the northern hemisphere. During the Vintersol/EuPLEx and ENVISAT validation campaigns in winter 2003, long-lived tracers such as N2O, CH4, CFC-12, CFC-11, H-1211, H2, SF6 and CO2 were measured with the High Altitude Gas Analyser (HAGAR), a two channel in-situ gas chromatograph combined with a CO2 instrument, based on nondispersive infrared absorption. Combined with measurements taken during campaigns in Forli/Italy (ENVISAT validation) in July and October 2002, tracer data were gathered from the tropopause up to altitudes around 20 km during 25 flights on board the Russian high-altitude aircraft M55 Geophysica. Thus, a substantial set of high quality tracer data has been obtained covering the polar vortex region as well as the mid latitudes of the northern hemisphere. Chapter 2 gives an overview of the HAGAR instrument and necessary improvements of the instrumental set up (implementing a CH4 channel) that were performed in the context of this thesis, and review data processing, the measurement campaigns. In order to study transport into the LMS it is assumed that air basically enters the LMS via three different pathways: a) quasi-isentropic transport from the troposphere, b) downward advection from the middle stratosphere through the 380 K surface and c) in the polar vortex region subsidence of air from of the polar vortex. Fractions of air originating in each of these source regions are determined with a simple mass balance calculation by using observations of a subset of the above species with distinct lifetimes (N2O, CH4, CFC-11, H-1211, H2 and O3) yielding complementary constraints on transport from each region. Details of the mass balance calculation and the results are presented in Chapter 3. During the mid-latitude measurement campaigns in Forlí the passing of a cut-off low system associated with an elongated streamer over Europe was observed. The impacts of this event on the trace gas mixing ratios in the LMS are examined in Chapter 4. Finally, a summary is given in Chapter 5.