Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- FX06 (1)
- Kim-1 (1)
- angiogenesis (1)
- chelation therapy (1)
- cytokines (1)
- dedifferentiation (1)
- endothelial activation (1)
- iron (1)
- macrophage (1)
- mesenchymal stromal/stem cells (1)
Institute
- Medizin (8)
Acute kidney injury (AKI) is one of the most important complications in hospitalized patients and its pathomechanisms are not completely elucidated. We hypothesize that signaling via toll-like receptor (TLR)-3, a receptor that is activated upon binding of double-stranded nucleotides, might play a crucial role in the pathogenesis of AKI following ischemia and reperfusion (IR). Male adult C57Bl6 wild-type (wt) mice and TLR-3 knock-out (-/-) mice were subjected to 30 minutes bilateral selective clamping of the renal artery followed by reperfusion for 30 min 2.5h and 23.5 hours or subjected to sham procedures. TLR-3 down-stream signaling was activated already within 3 h of ischemia and reperfusion in post-ischemic kidneys of wt mice lead to impaired blood perfusion followed by a strong pro-inflammatory response with significant neutrophil invasion. In contrast, this effect was absent in TLR-3-/- mice. Moreover, the quick TLR-3 activation resulted in kidney damage that was histomorphologically associated with significantly increased apoptosis and necrosis rates in renal tubules of wt mice. This finding was confirmed by increased kidney injury marker NGAL in wt mice and a better preserved renal perfusion after IR in TLR-3-/- mice than wt mice. Overall, the absence of TLR-3 is associated with lower cumulative kidney damage and maintained renal blood perfusion within the first 24 hours of reperfusion. Thus, we conclude that TLR-3 seems to participate in the pathogenesis of early acute kidney injury.
Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations.
Disruption of the renal endothelial integrity is pivotal for the development of a vascular leak, tissue edema and consequently acute kidney injury. Kidney ischemia amplifies endothelial activation and up-regulation of pro-inflammatory mechanisms. After restoring a sufficient blood flow, the kidney is damaged through complex pathomechanisms that are classically referred to as ischemia and reperfusion injury, where the disruption of the inter-endothelial connections seems to be a crucial step in this pathomechanism. Focusing on the molecular cell-cell interaction, the fibrinopeptide Bβ15–42 prevents vascular leakage by stabilizing these inter-endothelial junctions. The peptide associates with vascular endothelial-cadherin, thus preventing early kidney dysfunction by preserving blood perfusion efficacy, edema formation and thus organ dysfunction. We intended to demonstrate the early therapeutic benefit of intravenously administered Bβ15–42 in a mouse model of renal ischemia and reperfusion. After 30 minutes of ischemia, the fibrinopeptide Bβ15–42 was administered intravenously before reperfusion was commenced for 1 and 3 hours. We show that Bβ15–42 alleviates early functional and morphological kidney damage as soon as 1 h and 3 h after ischemia and reperfusion. Mice treated with Bβ15–42 displayed a significantly reduced loss of VE-cadherin, indicating a conserved endothelial barrier leading to less neutrophil infiltration which in turn resulted in significantly reduced structural renal damage. The significant reduction in tissue and serum neutrophil gelatinase-associated lipocalin levels reinforced our findings. Moreover, renal perfusion analysis by color duplex sonography revealed that Bβ15–42 treatment preserved resistive indices and even improved blood velocity. Our data demonstrate the efficacy of early therapeutic intervention using the fibrinopeptide Bβ15–42 in the treatment of acute kidney injury resulting from ischemia and reperfusion. In this context Bβ15–42 may act as a potent renoprotective agent by preserving the endothelial and vascular integrity.
The lung is, more than other solid organs, susceptible for ischemia reperfusion injury after orthotopic transplantation. Corticosteroids are known to potently suppress pro-inflammatory processes when given in the post-operative setting or during rejection episodes. Whereas their use has been approved for these clinical indications, there is no study investigating its potential as a preservation additive in preventing vascular damage already in the phase of ischemia. To investigate these effects we performed orthotopic lung transplantations (LTX) in the rat. Prednisolone was either added to the perfusion solution for lung preservation or omitted and rats were followed for 48 hours after LTX. Prednisolone preconditioning significantly increased survival and diminished reperfusion edema. Hypoxia induced vasoactive cytokines such as VEGF were reduced. Markers of leukocyte invasiveness like matrix metalloprotease (MMP)-2, or common pro-inflammatory molecules like the CXCR4 receptor or the chemokine (C-C motif) ligand (CCL)-2 were downregulated by prednisolone. Neutrophil recruitment to the grafts was only increased in Perfadex treated lungs. Together with this, prednisolone treated animals displayed significantly reduced lung protein levels of neutrophil chemoattractants like CINC-1, CINC-2α/β and LIX and upregulated tissue inhibitor of matrix metalloproteinase (TIMP)-1. Interestingly, lung macrophage invasion was increased in both, Perfadex and prednisolone treated grafts, as measured by MMP-12 or RM4. Markers of anti-inflammatory macrophage transdifferentiation like MRC-1, IL-13, IL-4 and CD163, significantly correlated with prednisolone treatment. These observations lead to the conclusion that prednisolone as an additive to the perfusion solution protects from hypoxia triggered danger signals already in the phase of ischemia and thus reduces graft edema in the phase of reperfusion. Additionally, prednisolone preconditioning might also lead to macrophage polarization as a beneficial long-term effect.
The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling.
Stem cell-based therapies require cells with a maximum regenerative capacity in order to support regeneration after tissue injury and organ failure. Optimization of this regenerative potential of mesenchymal stromal/stem cells (MSC) or their conditioned medium by in vitro preconditioning regimens are considered to be a promising strategy to improve the release of regenerative factors. In the present study, MSC were isolated from inguinal adipose tissue (mASC) from C57BL/6 mice, cultured, and characterized. Then, mASC were either preconditioned by incubation in a hypoxic environment (0.5% O2), or in normoxia in the presence of murine epidermal growth factor (EGF) or tumor necrosis factor α (TNFα) for 48 h. Protein expression was measured by a commercially available array. Selected factors were verified by PCR analysis. The expression of 83 out of 308 proteins (26.9%) assayed was found to be increased after preconditioning with TNFα, whereas the expression of 61 (19.8%) and 70 (22.7%) proteins was increased after incubation with EGF or in hypoxia, respectively. Furthermore, we showed the proliferation-promoting effects of the preconditioned culture supernatants on injured epithelial cells in vitro. Our findings indicate that each preconditioning regimen tested induced an individual expression profile with a wide variety of factors, including several growth factors and cytokines, and therefore may enhance the regenerative potential of mASC for cell-based therapies.
Early and adequate restoration of endothelial and tubular renal function is a substantial step during regeneration after ischemia reperfusion (IR) injury, occurring, e.g., in kidney transplantation, renal surgery, and sepsis. While tubular epithelial cell injury has long been of central importance, recent perception includes the renal vascular endothelium. In this regard, the fibrin cleavage product fibrinopeptide Bβ15-42 mitigate IR injury by stabilizing interendothelial junctions through its affinity to VE-cadherin. Therefore, this study focused on the effect of Bβ15-42 on post-acute physiological renal regeneration. For this, adult male C57BL/6 mice were exposed to a 30 min bilateral renal ischemia and reperfusion for 24 h or 48 h. Animals were randomized in a non-operative control group, two operative groups each treated with i.v. administration of either saline or Bβ15-42 (2.4 mg/kg) immediately prior to reperfusion. Endothelial activation and inflammatory response was attenuated in renal tissue homogenates by single application of Bβ15-42. Meanwhile, Bβ15-42 did not affect acute kidney injury markers. Regarding the angiogenetic players VEGF-A, Angiopoietin-1, Angiopoietin-2, however, we observed significant higher expressions at mRNA and trend to higher protein level in Bβ15-42 treated mice, compared to saline treated mice after 48 h of IR, thus pointing toward an increased angiogenetic activity. Similar dynamics were observed for the intermediate filament vimentin, the cytoprotective protein klotho, stathmin and the proliferation cellular nuclear antigen, which were significantly up-regulated at the same points in time. These results suggest a beneficial effect of anatomical contiguously located endothelial cells on tubular regeneration through stabilization of endothelial integrity. Therefore, it seems that Bβ15-42 represents a novel pharmacological approach in the targeted therapy of acute renal failure in everyday clinical practice.
Accumulating evidence suggests that iron homeostasis is disturbed in tumors. We aimed at clarifying the distribution of iron in renal cell carcinoma (RCC). Considering the pivotal role of macrophages for iron homeostasis and their association with poor clinical outcome, we investigated the role of macrophage-secreted iron for tumor progression by applying a novel chelation approach. We applied flow cytometry and multiplex-immunohistochemistry to detect iron-dependent markers and analyzed iron distribution with atomic absorption spectrometry in patients diagnosed with RCC. We further analyzed the functional significance of iron by applying a novel extracellular chelator using RCC cell lines as well as patient-derived primary cells. The expression of iron-regulated genes was significantly elevated in tumors compared to adjacent healthy tissue. Iron retention was detected in tumor cells, whereas tumor-associated macrophages showed an iron-release phenotype accompanied by enhanced expression of ferroportin. We found increased iron amounts in extracellular fluids, which in turn stimulated tumor cell proliferation and migration. In vitro, macrophage-derived iron showed pro-tumor functions, whereas application of an extracellular chelator blocked these effects. Our study provides new insights in iron distribution and iron-handling in RCC. Chelators that specifically scavenge iron in the extracellular space confirmed the importance of macrophage-secreted iron in promoting tumor growth