Refine
Document Type
- Article (15)
- Doctoral Thesis (1)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- SARS-CoV-2 (5)
- COVID19-NMR (4)
- RNA (4)
- Solution NMR spectroscopy (3)
- 5′-UTR (2)
- NMR spectroscopy (2)
- structural biology (2)
- 19F (1)
- 2'-deoxyguanosine riboswitch (1)
- 5'-UTR (1)
SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.
We report here the nuclear magnetic resonance 19F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.
The mfl-riboswitch regulates expression of ribonucleotide reductase subunit in Mesoplasma florum by binding to 2´-deoxyguanosine and thereby promoting transcription termination. We characterized the structure of the ligand-bound aptamer domain by NMR spectroscopy and compared the mfl-aptamer to the aptamer domain of the closely related purine-sensing riboswitches. We show that the mfl-aptamer accommodates the extra 2´-deoxyribose unit of the ligand by forming a more relaxed binding pocket than these found in the purine-sensing riboswitches. Tertiary structures of the xpt-aptamer bound to guanine and of the mfl-aptamer bound to 2´-deoxyguanosine exhibit very similar features, although the sequence of the mfl-aptamer contains several alterations compared to the purine-aptamer consensus sequence. These alterations include the truncation of a hairpin loop which is crucial for complex formation in all purine-sensing riboswitches characterized to date. We further defined structural features and ligand binding requirements of the free mfl-aptamer and found that the presence of Mg2+ is not essential for complex formation, but facilitates ligand binding by promoting pre-organization of key structural motifs in the free aptamer.
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C40 nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C10,H10 ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs. Keywords: NMR spectroscopy , Direct carbon , detection , RNA
The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5′- and 3′-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5′-untranslated region (5′-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.
In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop–loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gswloop) in the absence of Mg2+. However, if Mg2+ is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop–loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gswloop is tunable through variation of the Mg2+ concentration. We quantitatively describe the influence of distinct Mg2+ concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.
Der 2‘-Desoxyguanosin-Riboschalter gehört zur unter Bakterien weit verbreiteten Klasse der Purin-Riboschalter. Allerdings wurden 2‘-Desoxyguanosin-bindende Riboschalter bisher ausschließlich in M. florum gefunden, damit stellt diese RNA eine Ausnahme unter den ansonsten verbreiteten Purin-Riboschaltern dar. In der vorliegenden Arbeit wurde ein NMR-Strukturmodell des IA-Aptamer-2‘-Desoxyguanosinkomplexes erstellt und anhand der mittels NMRSpektroskopie zugänglichen strukturellen Informationen sowohl Struktur und Dynamik des freien RNA-Aptamers als auch des 2‘-Desoxyguanosinkomplexes charakterisiert. Dabei wurde insbesondere der Einfluss von Mg2+ auf Struktur und Dynamik der jeweiligen Zustände sowie auf den durch 2‘-Desoxyguanosin induzierten Faltungsprozess untersucht.
Mg2+-Ionen modulieren die Faltungstrajektorien von sensorischen RNA-Domänen. Die Übertragbarkeit von Mg2+-abhängigen Charakteristika der RNA-Faltung innerhalb verschiedener Messmethoden ist durch die schlechte Vergleichbarkeit der relativen Konzentrationsverhältnisse eingeschränkt. Die NMR-spektroskopisch beobachtbaren Mg2+-Einflüsse sollten also unter besonderer Berücksichtigung der für NMR benötigten vergleichsweise sehr hohen RNAKonzentrationen mit Ergebnissen aus kalorimetrischen oder fluoreszenzspektroskopischen Messungen interpretiert werden. Die in der NMR-Spektroskopie üblichen hohen Probenkonzentrationen befinden sich in dem Regime, in dem auch der physikalische Effekt des verdrängten Volumens eine Rolle zu spielen beginnt. Demnach ist es für die RNA-Moleküle im NMR-Probenröhrchen bei Konzentrationen von 5-10 mg/ml auch ohne Zugabe von Mg2+ entropisch günstiger, kompakte Konformationen einzunehmen. Die Relevanz des Effekts des verdrängten Volumens für die RNA-Faltung unter NMR-Bedingungen und unter zellulären Bedingungen ist Gegenstand der aktuellen Forschung und wird in dieser Arbeit am Beispiel des IA-Aptamers diskutiert.
Der oft einzigartige Bindungsmodus ubiquitärer Metaboliten durch bakterielle Riboschalter (Montange and Batey, 2006) ermöglicht prinzipiell den Einsatz von RNA-Aptameren in vivo, ohne mit zellulären Proteinsystemen zu interferieren (Mulhbacher et al., 2010). Therapeutische Ziele sind beispielsweise die Anwendung von Riboschaltern gegen bakterielle Pathogene beziehungsweise gegen pathogene Bakterien selbst. Eine weitere Rolle wird RiboschalterElementen zukünftig als Bausteine in der synthetischen Biologie zukommen (Dixon et al., 2010; Knight, 2003; Topp and Gallivan, 2008). Hierfür ist es von grundlegender Bedeutung, Charakterisierung von Struktur als Basis für das Verständnis von Funktion unter zellulären Bedingungen zu etablieren. Im Rahmen einer Zusammenarbeit mit Robert Hänsel aus dem Arbeitskreis von Prof. Dr. Volker Doetsch wurde am Beispiel des IA-Aptamers und einer nichtnatürlichen Sequenzvariante gezeigt, dass eine strukturelle Charakterisierung von Riboschaltern mittels in cell NMR-Spektroskopie möglich ist. In Zusammenarbeit mit Karl von Laer aus der Arbeitsgruppe von Prof. Dr. Beatrix Suess wurden beide RNA-Aptamer hinsichtlich ihrer Funktion in einem biologischen Assay getestet. Die Ergebnisse dieser Experimente zeigten eine deutliche Korrelation von Struktur und Funktion in vivo, während Diskrepanzen zwischen Struktur in vitro und Funktion in vivo demonstriert werden.
Weiterhin wurde im Rahmen dieser Arbeit gezeigt, dass eine gewisse strukturelle Flexibilität der Bindungstaschen regulatorischer RNA-Motive für Selektion und Adaption während Evolution nötig ist. Beispielsweise wurde für den Guanin-Riboschalter gezeigt, dass der nicht-native Ligand 2‘-Desoxyguanosin zur Komplexbildung des Aptamers führt. Demnach könnte die Bindung von 2‘-Desoxyguanosin im Guanin-Riboschalter bereits evolutionär angelegt sein und die Entstehung des IA-Aptamers nach Genomreduktion der Mesoplasmen begünstigt haben. Das IA-Aptamer dagegen bindet Guanin nicht, stattdessen besitzt M. florum auf Guanin spezialisierte Sequenzvarianten dieses Riboschalters (Kim et al., 2007). Strukturell hochauflösende Einblicke in unterschiedliche Zustände der Bindungstasche im G-Aptamer-Thioguaninkomplex, die durch die Lösung der Kristallstruktur des GLoop-Aptamers ermöglicht wurden, unterstützen die Hypothese einer anpassungsfähigen Bindungstasche im G-Aptamer. Für B. subtilis wäre es interessant, die physiologische Bedeutung der Komplexbildung des G-Aptamers mit 2‘-Desoxyguanosin zu untersuchen.