Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Slack (2)
- Adenosine A1 receptor (1)
- In situ hybridization (1)
- KCNT1 (1)
- Kaliumkanal-Aktivatoren (1)
- Neuropathic pain (1)
- P2X3 (1)
- Pain behavior (1)
- Partial agonist (1)
- Patch-clamp (1)
Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.
Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice
(2021)
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.
The transient receptor potential (TRP) ankyrin type 1 (TRPA1) channel is highly expressed in a subset of sensory neurons where it acts as an essential detector of painful stimuli. However, the mechanisms that control the activity of sensory neurons upon TRPA1 activation remain poorly understood. Here, using in situ hybridization and immunostaining, we found TRPA1 to be extensively co-localized with the potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) in sensory neurons. Mice lacking Slack globally (Slack−/−) or conditionally in sensory neurons (SNS-Slack−/−) demonstrated increased pain behavior after intraplantar injection of the TRPA1 activator allyl isothiocyanate. By contrast, pain behavior induced by the TRP vanilloid 1 (TRPV1) activator capsaicin was normal in Slack-deficient mice. Patch-clamp recordings in sensory neurons and in a HEK cell line transfected with TRPA1 and Slack revealed that Slack-dependent potassium currents (IKS) are modulated in a TRPA1-dependent manner. Taken together, our findings highlight Slack as a modulator of TRPA1-mediated, but not TRPV1-mediated, activation of sensory neurons.
Keywords: TRPA1; slack; dorsal root ganglia; pain; mice
Functional coupling of Slack channels and P2X3 receptors contributes to neuropathic pain processing
(2021)
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.
Der Natrium-abhängige Kaliumkanal Slack (KNa1.1, Slo2.2, KCNT1) nimmt eine Schlüsselrolle in der Regulation neuronaler Erregbarkeit ein, indem er die Ausbildung und Feuerungsfrequenz von Aktionspotentialen kontrolliert. Sowohl in Mäusen als auch in Menschen wird Slack besonders hoch in nicht-peptidergen C-Faser-Neuronen exprimiert. Wissenschaftliche Erkenntnisse der letzten Jahre konnten die Beteiligung von Slack-Kanälen in der Signalverarbeitung neuropathischer Schmerzen, aber auch in verschiedenen Arten von Pruritus, feststellen. Dabei zeigen Slack-defiziente Mäuse ein verstärktes mechanisches Schmerzverhalten nach einer peripheren Nervenverletzung und ein erhöhtes Kratzverhalten in akuten Juckreiz-Modellen. Das als Slack-Aktivator identifizierte trizyklische Neuroleptikum Loxapin zeigt sowohl analgetische als auch antipruritische Effekte in Mäusen, jedoch ist sein klinischer Einsatz auf Grund schwerwiegender antipsychotischer Nebenwirkungen limitiert. Basierend auf Loxapins Leitstruktur wurden daher in dieser Arbeit neue Slack-Aktivatoren mit einem verbesserten pharmakologischen Profil designed und ihr Potential für die Therapie von Schmerzen sowie akutem und chronischem Pruritus in vivo untersucht.