Refine
Document Type
- Article (3)
- Preprint (2)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- SARS-CoV-2 (3)
- Ag-RDT (1)
- Autopsy (1)
- Forensic medicine (1)
- PCR (1)
- POCT (1)
- Pathology (1)
- Post mortem examination (1)
- Virologie (1)
- Virology (1)
Institute
- Medizin (6)
Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8–82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.
The duration of infectivity of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in living patients has been demarcated. In contrast, a possible SARS-CoV-2 infectivity of corpses and subsequently its duration under post mortem circumstances remain to be elucidated. The aim of this study was to investigate the infectivity and its duration of deceased COVID-19 (coronavirus disease) patients. Four SARS-CoV-2 infected deceased patients were subjected to medicolegal autopsy. Post mortem intervals (PMI) of 1, 4, 9 and 17 days, respectively, were documented. During autopsy, swabs and organ samples were taken and examined by RT-qPCR (real-time reverse transcription-polymerase chain reaction) for the detection of SARS-CoV-2 ribonucleic acid (RNA). Determination of infectivity was performed by means of virus isolation in cell culture. In two cases, virus isolation was successful for swabs and tissue samples of the respiratory tract (PMI 4 and 17 days). The two infectious cases showed a shorter duration of COVID-19 until death than the two non-infectious cases (2 and 11 days, respectively, compared to > 19 days), which correlates with studies of living patients, in which infectivity could be narrowed to about 6 days before to 12 days after symptom onset. Most notably, infectivity was still present in one of the COVID-19 corpses after a post-mortem interval of 17 days and despite already visible signs of decomposition. To prevent SARS-CoV-2 infections in all professional groups involved in the handling and examination of COVID-19 corpses, adequate personal safety standards (reducing or avoiding aerosol formation and wearing FFP3 [filtering face piece class 3] masks) have to be enforced for routine procedures.
The impact of the Covid-19 pandemic called for rapid responses in face of unprecedented challenges. In this context, earning more about the causative agent SARS-CoV-2 becomes imperative. Therefore, clinical virus isolates were studied with focus on infectivity, replication kinetic, and caspase activity.
Firstly, clinical specimens collected from patients were tested for infectivity in cell culture. Combined with polymerase chain reaction results, a formula predicting infectivity in cell culture based on abundance of viral RNA was developed. Additionally, analysis of different specimen types, sources, and material, elucidate the question of infectivity. Here, infectivity was demonstrated in specimens derived from different parts of the respiratory tract, including specimens collected from deceased persons. A protocol for virus isolation on human airway epithelium in air-liquid interface culture was established.
Secondly, replication kinetics of 20 clinical isolates were compared, including a subset of seven sequenced isolates. All isolates replicated in the colon epithelial cell culture model. Within the subset, differences between isolates carrying the D614G amino acid exchange and with original spike protein were observed.
Lastly, elevated caspase activity was demonstrated in two cell culture models including human airway epithelium in air-liquid interface culture.
Subsequently, caspase inhibition by small-molecule compound Emricasan and its effects on the cytopathic effect observed in cell culture were studied. Here, increased cell survival in a colon epithelial cell line was shown with unimpaired virus replication. Elevated caspase activity was identified as early marker of infection and validated by testing across 20 clinical virus isolates.
This study offers information on infectivity that can help shape the understanding of transmission risk. As such, parts of the data collected here were used for validation of rapid antigen tests. The insights gained by studying caspase activity contributed in part to the development of a drug screening method by Bojkova et al.,41 thus aiding routine laboratory workflow. It was demonstrated that Emricasan exhibits no antiviral effect, while the finding of increased cell survival in cell culture could give rise to further research on prevention of tissue damage.
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a read-out for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in a broad range of cell culture models, independently of cytopathogenic effect formation. Compared to other cell culture models, the Caco-2 subline Caco-2-F03 displayed superior performance, as it possesses a stable SARS-CoV-2 susceptible phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of PHGDH, CLK-1, and CSF1R. The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the HK2 inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false positive hits.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread from symptomatic patients with COVID-19, but also from asymptomatic individuals. Therefore, robust surveillance and timely interventions are essential for the control of virus spread within the community. In this regard the frequency of testing and speed of reporting, but not the test sensitivity alone, play a crucial role. In order to reduce the costs and meet the expanding demands in real-time RT-PCR (rRT-PCR) testing for SARS-CoV-2, complementary assays, such as rapid antigen tests, have been developed. Rigorous analysis under varying conditions is required to assess the clinical performance of these tests and to ensure reproducible results. We evaluated the sensitivity and specificity of a recently licensed rapid antigen test using 137 clinical samples in two institutions. Test sensitivity was between 88.2-89.6% when applied to samples with viral loads typically seen in infectious patients. Of 32 rRT-PCR positive samples, 19 demonstrated infectivity in cell culture, and 84% of these samples were reactive with the antigen test. Seven full-genome sequenced SARS-CoV-2 isolates and SARS-CoV-1 were detected with this antigen test, with no cross-reactivity against other common respiratory viruses. Numerous antigen tests are available for SARS-CoV-2 testing and their performance to detect infectious individuals may vary. Head-to-head comparison along with cell culture testing for infectivity may prove useful to identify better performing antigen tests. The antigen test analyzed in this study is easy-to-use, inexpensive, and scalable. It can be helpful in monitoring infection trends and thus has potential to reduce transmission.
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.