Refine
Year of publication
Document Type
- Article (29)
Language
- English (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- crystal structure (21)
- hydrogen bonding (11)
- TATD (4)
- Schiff bases (3)
- benzoxazines (3)
- co-crystalline adducts (3)
- phenolic resins (3)
- aminal structure (2)
- co-crystalline adduct (2)
- halogen bonding (2)
Institute
- Biochemie und Chemie (29)
The asymmetric unit of the title compound, C28H42N2O5·H2O, consists of one half of the organic molecule and one half-molecule of water, both of which are located on a mirror plane which passes through the central C atoms and the hydroxyl group of the heterocyclic system. The hydroxyl group at the central ring is disordered over two equally occupied positions. The six-membered ring adopts a chair conformation, and the 2-hydroxybenzyl substituents occupy the sterically preferred equatorial positions. The aromatic rings make dihedral angles of 75.57 (9)° with the mean plane of the heterocyclic ring. The dihedral angle between the two aromatic rings is 19.18 (10)°. The molecular structure features two intramolecular phenolic O-H...N hydrogen bonds with graph-set motif S(6). In the crystal, molecules are connected via O-H...O hydrogen bonds into zigzag chains running along the a-axis direction.
Synthesis and crystal structure of 2-(2-hydroxyphenyl)-1,3-bis(4-methoxybenzyl)-1,3-diazinan-5-ol
(2022)
The redetermined structure of 2-(2-hydroxyphenyl)-1,3-bis(4-methoxybenzyl)-1,3-diazinan-5-ol, C26H30N2O4, at 173 K has orthorhombic (Pbca) symmetry. It was previously described by Bolte et al. [ Private Communication (refcode EWICEV). CCDC, Cambridge, England]. The title compound resulted from the condensation reaction between 1,3-bis{[(4-methoxyphenyl)methyl]amino}propan-2-ol and 2-hydroxybenzaldehyde in CH3OH. The structure exhibits disorder. One of the 4-methoxybenzyl groups, the hydroxy group bonded to the 1,3-diazinan ring, and the methyl group of the methoxy residue are disordered over two orientations, with occupancies of 0.807 (3)/0.193 (3), 0.642 (5)/0.358 (5), and 0.82 (4)/0.18 (4), respectively. The dihedral angles between the mean planes of the central 1,3-diazinan-5-ol and the 4-methoxyphenyl rings (both occupancy components of the disordered ring) are 88.65 (13), 85.79 (14) and 83.4 (7)°. The crystal packing is sustained by C—H...O and O—H...π interactions, giving rise to infinite chains running along the b-axis direction.
The title compound, C8H16N4·2C11H16O, was synthesized from the corresponding sterically crowded phenol by treatment with the aminal cage polyamine. Single-crystal X-ray diffraction structural analysis revealed the three-molecule aggregate to crystallize in the monoclinic space group P2/c with one half of a 1,3,6,8-tetraaztricyclo[4.4.1.13,8]dodecane (TATD) molecule and one 2-tert-butyl-4-methylphenol molecule per asymmetric unit. The crystal structure features intermolecular O—H...N and C—H...O hydrogen bonds, as well as intermolecular C—H...π interactions.
In the title compound, C23H19NO2, an oxazine Mannich base derivative, the oxazine ring has a half-chair conformation. The 2-hydroxynaphthalen-1-yl substituent is placed in an axial position. There is an intramolecular O-H...N hydrogen bond, forming an S(6) graph-set motif. In the crystal, molecules are connected by a pair of C-H...[pi] interactions into an inversion dimer, which is reinforced by another pair of weak C-H...[pi] interactions. The dimers are linked by a [pi]-[pi] interaction [centroid-centroid distance = 3.6268 (17) Å], consolidating a column along the a axis. Furthermore, the columns interact with each other by a weak C-H...[pi] interaction, generating a three-dimensional network.
In the crystal of the title co-crystalline adduct, C8H16N4·C8H9ClO, (I), prepared by solid-state reaction, the molecules are linked by intermolecular O—H⋯N hydrogen bonds, forming a D motif. The azaadamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3) and −9.0 (3)°. These values differ slightly from the corresponding torsion angles in the free aminal cage (0.0°) and in related co-crystalline adducts, which are not far from a planar geometry and consistent with a D2d molecular symmetry in the tetraazatricyclo structure. The structures also differ in that there is a slight elongation of the N—C bond lengths about the N atom that accepts the hydrogen bond in (I) compared with the other N—C bond lengths. In the crystal, the two molecules are not only linked by a classical O—H⋯N hydrogen bond but are further connected by weak C—H⋯π interactions, forming a two-dimensional supramolecular network parallel to the bc plane.
The structure of the 1:2 co-crystalline adduct C8H16N4·2C6H5BrO, (I), from the solid-state reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) and 4-bromophenol, has been determined. The asymmetric unit of the title co-crystalline adduct comprises a half molecule of aminal cage polyamine plus a 4-bromophenol molecule. A twofold rotation axis generates the other half of the adduct. The primary inter-species association in the title compound is through two intermolecular O—H⋯N hydrogen bonds. In the crystal, the adducts are linked by weak non-conventional C—H⋯O and C—H⋯Br hydrogen bonds, giving a two-dimensional supramolecular structure parallel to the bc plane.
In the title compound, C25H36N2O2, the two tert-butyl-substituted benzene rings are inclined at an angle of 53.5 (3)° to one another. The imidazolidine ring has an envelope conformation with with one of the C atoms of the ethylene fragment as the flap. The structure displays two intra-molecular O-H⋯N hydrogen bonds that generate S(6) ring motifs. The crystal studied was a non-merohedral twin with a fractional contribution of 0.281(6) for the minor domain.
The title compound, C23H32Cl2N2O2, a potential chiral ligand for coordination chemistry, was prepared by a two-step reaction. The molecule is located on a crystallographic centre of inversion. As a result, the methyl group bonded to the methylene group is disordered over two equally occupied positions, sharing the same site as the H atom of the chiral C atom. As a further consequence of the crystallographic centrosymmetry, the 1,2-diaminopropane unit adopts an antiperiplanar conformation and the two benzene rings are coplanar. The central chain is in an all-trans arrangement. An intramolecular O-H...N hydrogen bond makes an S(6) ring motif. A C-H...[pi] interaction links the molecules into one-dimensional chains along the [001] direction.
In the title compound, C17H18N2O, the central carbon atom with the OH substituent and one of the (E)-benzylideneamino substituents are disordered over two sets of sites with occupancies of 0.851 (4) and 0.149 (4). The relative positions of the two disorder components is equivalent to a rotation of approximately 60° about the C—N single bond. In the crystal, the molecules are held together by O—H...N hydrogen bonds, forming simple C(5) chains along the b-axis direction. In addition, pairs of the chains are further aggregated by weak C—H...π interactions.
Structural and vibrational studies have been carried out for the most stable conformer of 3,3′-ethane-1,2-diyl-bis-1,3,5-triazabicyclo[3.2.1]octane (ETABOC) at the DFT/B3LYP/6-31G(dp) level using the Gaussian 03 software. In light of the computed vibrational parameters, the observed IR Bolhmann bands for the C2V, C2, and Ci symmetrical structures of ETABOC have been analyzed. Hyperconjugative interaction was done by Natural Bond Orbital Analysis. Interpretation of hyperconjugative interaction involving the lone pairs on the bridgehead nitrogen atoms with the neighboring C–N and C–C bonds defines the conformational preference of the title compound. The recorded X-ray diffraction bond parameters were compared with theoretical values calculated at B3LYP/6-31G(d,p) and HF/6-31G(d,p) level of theory showed that ETABOC adopts a chair conformation and possesses an inversion center.