Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Dental implant (3)
- Biopsy (2)
- Macrophage polarization (2)
- Peri-implantitis (2)
- Treatment (2)
- dental implant (2)
- peri-implant diseases (2)
- peri-implantitis (2)
- prevalence (2)
- systematic review (2)
Institute
- Medizin (11)
Purpose: To evaluate the efficacy of alternative or adjunctive measures to conventional non-surgical or surgical treatment of peri-implant mucositis and peri-implantitis.
Material and methods: Prospective randomized and nonrandomized controlled studies comparing alternative or adjunctive measures, and reporting on changes in bleeding scores (i.e., bleed0ing index (BI) or bleeding on probing (BOP)), probing depth (PD) values or suppuration (SUPP) were searched.
Results: Peri-implant mucositis: adjunctive use of local antiseptics lead to greater PD reduction (weighted mean difference (WMD) = − 0.23 mm; p = 0.03, respectively), whereas changes in BOP were comparable (WMD = − 5.30%; p = 0.29). Non-surgical treatment of peri-implantitis: alternative measures for biofilm removal and systemic antibiotics yielded higher BOP reduction (WMD = − 28.09%; p = 0.01 and WMD = − 17.35%; p = 0.01, respectively). Surgical non-reconstructive peri-implantitis treatment: WMD in PD amounted to − 1.11 mm favoring adjunctive implantoplasty (p = 0.02). Adjunctive reconstructive measures lead to significantly higher radiographic bone defect fill/reduction (WMD = 56.46%; p = 0.01 and WMD = − 1.47 mm; p = 0.01), PD (− 0.51 mm; p = 0.01) and lower soft-tissue recession (WMD = − 0.63 mm; p = 0.01), while changes in BOP were not significant (WMD = − 11.11%; p = 0.11).
Conclusions: Alternative and adjunctive measures provided no beneficial effect in resolving peri-implant mucositis, while alternative measures were superior in reducing BOP values following non-surgical treatment of peri-implantitis. Adjunctive reconstructive measures were beneficial regarding radiographic bone-defect fill/reduction, PD reduction and lower soft-tissue recession, although they did not improve the resolution of mucosal inflammation.
Background and Objective: Macrophages’ cytokine expression and polarization play a substantial role in the host's “destructive” inflammatory response to periodontal and peri‐implant pathogens. This study aimed to evaluate cell viability, anti‐inflammatory activity, and macrophage polarization properties of different cranberry concentrates.
Methods: THP‐1 cells (monocytic line) were treated with phorbol myristic acid to induce macrophage differentiation. Human gingival fibroblasts (HFIB‐G cell line), osteosarcoma‐derived osteoblasts (SAOS‐2 cell line), and induced macrophages were treated with cranberry concentrates at 25, 50, and 100 µg/mL for 120 seconds, 1 hour and 24 hours. Untreated cells at the same time points served as controls. For anti‐inflammatory analysis, induced macrophages exposed to cranberry concentrates (A‐type PACs) were stimulated with lipopolysaccharides (LPS) derived from E coli for 24 hours. Cell viability, interleukin (IL)‐8, IL‐1 ß, IL‐6, and IL‐10 expression of LPS‐stimulated macrophages, and macrophage polarization markers were evaluated through determination of live‐cell protease activity, enzyme‐linked immunosorbent assay, and immunofluorescence staining semi‐quantification.
Results: Cranberry concentrates (A‐type PACs) did not reduce HGF, SAOS‐2, and macrophage viability after 24 hours of exposure. Pro‐inflammatory cytokine expression (ie IL‐8 and IL‐6) was downregulated in LPS‐stimulated macrophages by cranberry concentrates at 50 and 100 µg/mL. Anti‐inflammatory IL‐10 expression was significantly upregulated in LPS‐stimulated macrophages by cranberry concentrates at 100 µg/mL after 24 hours of exposure. M1 polarization significantly decreased when LPS‐stimulated macrophages were exposed to cranberry concentrates. High levels of positive M1 macrophages were present in all untreated control groups. M2 polarization significantly increased at all LPS‐stimulated macrophages exposed to cranberry concentrates for 1 and 24 hours.
Conclusion: Cranberry‐derived proanthocyanidins may have the potential to act as an anti‐inflammatory component in the therapy of periodontal and peri‐implant diseases.
The prevalence of peri-implant diseases around subcrestally placed implants: a cross-sectional study
(2021)
Objectives: To evaluate the prevalence of peri-implant health, peri-implant mucositis or periimplantitis for subcrestally placed implants (1–3 mm) on the short-, medium- and long term.
Material and Methods: Two hundred patients were enrolled in this cross-sectional study that were treated and screened during regular maintenance visits at one university center. A total of 657 implants were evaluated. Peri-implant health and diseases were assessed according to predefined case definitions. Binary logistic regression was used to assess the correlation with local and systemic factors.
Results: After a median function time of 9.36 ± 6.44 years (range: 1–26 years), the prevalence of peri-implant mucositis and peri-implantitis was 66.5% and 15.0%, at the patient level, corresponding to 62.6% and 7.5%, at the implant level, respectively. Peri-implantitis was significantly associated with patients’ history of periodontitis (odds ratio, OR 5.33).
Conclusion: Peri-implant diseases were a common finding around subcrestally placed implants.
Objectives: To assess and compare the efficacy and safety of autogenous tooth roots (TRs) and autogenous bone blocks (ABs) for combined vertical and horizontal alveolar ridge augmentation and two-stage implant placement.
Materials and Methods: A total of 28 patients in need of implant therapy and vertical ridge augmentation were allocated to parallel groups receiving either healthy autogenous tooth roots (e.g., retained wisdom teeth) (n = 14, n = 15 defects) or cortical autogenous bone blocks harvested from the retromolar area (n = 14, n = 17 defects). After 26 weeks of submerged healing, the clinical reduction in ridge height (RH) deficiency was defined as the primary outcome.
Results: Both surgical procedures were associated with a similar mean reduction in RH deficiency values, amounting to 4.48 ± 2.42 mm (median: 4.25; 95% CI: 3.08–5.88) in the TR group and 4.46 ± 3.31 mm (median: 3.00; 95% CI: 2.54–6.38) in the AB group (p = .60, Mann–Whitney U-test). In all patients investigated, the reduction in RH deficiency values allowed for an adequate implant placement at the respective sites. The frequency of complications (e.g., soft tissue dehiscences) was low (TR: n = 4; AB: n = 0).
Conclusions: Up to staged-implant placement, both TR and AB grafts appeared to be associated with comparable efficacy and safety for combined vertical and horizontal alveolar ridge augmentation.
Objectives: To evaluate peri-implant tissue dimensions following nonsurgical (NS) and surgical therapy (S) employing different decontamination protocols of advanced ligature-induced peri-implantitis in dogs.
Material & Methods: Peri-implantitis defects (n = 5 dogs, n = 30 implants) were randomly and equally allocated in a split-mouth design to NS or S treatment using either an Er:YAG laser (ERL), an ultrasonic device (VUS), or plastic curettes + local application of metronidazole gel (PCM), respectively. Horizontal bone thickness (hBT) and soft tissue thickness (hMT) were measured at different reference points: (v0) at the marginal portion of the peri-implant mucosa (PM); (v1) at 50% of the distance from PM to bone crest (BC); (v2) at the BC; (v3) at the most coronal extension of the bone-to-implant contact. Vertical peri-implant tissue height was calculated from PM to BC.
Results: All of the treatment groups showed a gradual hMT increase from v0 to the v2 reference point, followed by a reduction from v2 to the v3 region. The S-VUS subgroup tended to be associated with higher hMT values at the v0 region than the NS-VUS subgroup (0.44 mm versus 0.31 mm). PM-BC distance varied from 2.22 to 2.83 mm in the NS group, and from 2.07 to 2.38 in the S group.
Conclusion: Vertical and horizontal peri-implant tissue dimensions were similar in different treatment groups.
Aim: To evaluate the efficacy of different types of rehabilitation with fixed or removable full-arch implant-supported prosthesis designs in terms of implant loss and success in patients with at least one edentulous jaw, with tooth loss mainly due to periodontitis.
Materials and methods: Clinical studies with at least 12 months reporting on implant loss and implant success were searched. Meta-analysis was conducted to estimate cumulative implant loss considering different prostheses designs.
Results: A total of 11 studies with unclear to low risk of bias were included in the analysis. Estimated cumulative implant loss for fixed prostheses within 1 year and 5 years was 0.64% (95% confidence interval [CI]: 0.31%–1.31%) and 1.85% (95% CI: 0.85%–3.95%), respectively. The corresponding values for removable prostheses amounted to 0.71% (95% CI: 0.22%–2.28%) and 4.45% (95% CI: 2.48%–7.85%). Peri-implantitis affected 10%–50% of the patients restored with implant-supported fixed prostheses.
Conclusions: Based on the limited low-quality data, the present analysis points to a low and similar cumulative implant loss within 1 year for patients with tooth loss mainly due to stage IV periodontitis restored with either removable or fixed implant-supported full-arch prosthesis. At 5 years of functioning, there was a tendency for better outcomes using fixed designs.
Peri-implantitis: summary and consensus statements of group 3. The 6th EAO Consensus Conference 2021
(2021)
Objective: To evaluate the influence of implant and prosthetic components on peri-implant tissue health. A further aim was to evaluate peri-implant soft-tissue changes following surgical peri-implantitis treatment. Materials and methods: Group discussions based on two systematic reviews (SR) and one critical review (CR) addressed (i) the influence of implant material and surface characteristics on the incidence and progression of peri-implantitis, (ii) implant and restorative design elements and the associated risk for peri-implant diseases, and (iii) peri-implant soft-tissue level changes and patient-reported outcomes following peri-implantitis treatment. Consensus statements, clinical recommendations, and implications for future research were discussed within the group and approved during plenary sessions. Results: Data from preclinical in vivo studies demonstrated significantly greater radiographic bone loss and increased area of inflammatory infiltrate at modified compared to non-modified surface implants. Limited clinical data did not show differences between modified and non-modified implant surfaces in incidence or progression of peri-implantitis (SR). There is some evidence that restricted accessibility for oral hygiene and an emergence angle of >30 combined with a convex emergence profile of the abutment/prosthesis are associated with an increased risk for peri-implantitis (CR). Reconstructive therapy for peri-implantitis resulted in significantly less soft-tissue recession, when compared with access flap. Implantoplasty or the adjunctive use of a barrier membrane had no influence on the extent of peri-implant mucosal recession following peri-implantitis treatment (SR).
Objectives: To immunohistochemically characterize and correlate macrophage M1/M2 polarization status with disease severity at peri-implantitis sites.
Materials and methods: A total of twenty patients (n = 20 implants) diagnosed with peri-implantitis (i.e., bleeding on probing with or without suppuration, probing depths ≥ 6 mm, and radiographic marginal bone loss ≥ 3 mm) were included. The severity of peri-implantitis was classified according to established criteria (i.e., slight, moderate, and advanced). Granulation tissue biopsies were obtained during surgical therapy and prepared for immunohistological assessment and macrophage polarization characterization. Macrophages, M1, and M2 phenotypes were identified through immunohistochemical markers (i.e., CD68, CD80, and CD206) and quantified through histomorphometrical analyses.
Results: Macrophages exhibiting a positive CD68 expression occupied a mean proportion of 14.36% (95% CI 11.4–17.2) of the inflammatory connective tissue (ICT) area. Positive M1 (CD80) and M2 (CD206) macrophages occupied a mean value of 7.07% (95% CI 5.9–9.4) and 5.22% (95% CI 3.8–6.6) of the ICT, respectively. The mean M1/M2 ratio was 1.56 (95% CI 1–12–1.9). Advanced peri-implantitis cases expressed a significantly higher M1 (%) when compared with M2 (%) expression. There was a significant correlation between CD68 (%) and M1 (%) expression and probing depth (PD) values.
Conclusion: The present immunohistochemical analysis suggests that macrophages constitute a considerable proportion of the inflammatory cellular composition at peri-implantitis sites, revealing a significant higher expression for M1 inflammatory phenotype at advanced peri-implantitis sites, which could possibly play a critical role in disease progression.
Clinical relevance: Macrophages have critical functions to establish homeostasis and disease. Bacteria might induce oral dysbiosis unbalancing the host’s immunological response and triggering inflammation around dental implants. M1/M2 status could possibly reveal peri-implantitis’ underlying pathogenesis.
Aim: To evaluate the influence of the width of keratinized tissue (KT) on the prevalence of peri-implant diseases, and soft- and hard-tissue stability.
Materials and methods: Clinical studies reporting on the prevalence of peri-implant diseases (primary outcome), plaque index (PI), modified plaque index (mPI), bleeding index (mBI), bleeding on probing (BOP), probing pocket depths (PD), mucosal recession (MR), and marginal bone loss (MBL) and/or patient-reported outcomes (PROMs; secondary outcomes) were searched. The weighted mean differences (WMD) were estimated for the assessed clinical and radiographic parameters by employing a random-effect model that considered different KT widths (i.e., <2 and ≥2 mm).
Results: Twenty-two articles describing 21 studies (15 cross-sectional, five longitudinal comparative studies, and one case series with pre–post design) with an overall high to low risk of bias were included. Peri-implant mucositis and peri-implantitis affected 20.8% to 42% and at 10.5% to 44% of the implants with reduced or absent KT (i.e., <2 mm or 0 mm). The corresponding values at the implant sites with KT width of ≥2 mm or >0 mm were 20.5% to 53% and 5.1% to 8%, respectively. Significant differences between implants with KT < 2 mm and those with KT ≥ 2 mm were revealed for WMD for BOP, mPI, PI, MBL, and MR all favoring implants with KT ≥ 2 mm.
Conclusion: Reduced KT width is associated with an increased prevalence of peri-implantitis, plaque accumulation, soft-tissue inflammation, mucosal recession, marginal bone loss, and greater patient discomfort.
Purpose of Review: To provide an overview of current surgical peri-implantitis treatment options.
Recent Findings: Surgical procedures for peri-implantitis treatment include two main approaches: non-augmentative and augmentative therapy. Open flap debridement (OFD) and resective treatment are non-augmentative techniques that are indicated in the presence of horizontal bone loss in aesthetically nondemanding areas. Implantoplasty performed adjunctively at supracrestally and buccally exposed rough implant surfaces has been shown to efficiently attenuate soft tissue inflammation compared to control sites. However, this was followed by more pronounced soft tissue recession. Adjunctive augmentative measures are recommended at peri-implantitis sites exhibiting intrabony defects with a minimum depth of 3 mm and in the presence of keratinized mucosa. In more advanced cases with combined defect configurations, a combination of augmentative therapy and implantoplasty at exposed rough implant surfaces beyond the bony envelope is feasible.
Summary: For the time being, no particular surgical protocol or material can be considered as superior in terms of long-term peri-implant tissue stability.