Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- peri-implantitis (2)
- animal experiments (1)
- anti-inflammatory agents (1)
- bone (1)
- consensus (1)
- cranberry (1)
- dental implant (1)
- epidemiology (1)
- interleukins (1)
- macrophage polarization (1)
Institute
- Medizin (4)
Peri-implantitis: summary and consensus statements of group 3. The 6th EAO Consensus Conference 2021
(2021)
Objective: To evaluate the influence of implant and prosthetic components on peri-implant tissue health. A further aim was to evaluate peri-implant soft-tissue changes following surgical peri-implantitis treatment. Materials and methods: Group discussions based on two systematic reviews (SR) and one critical review (CR) addressed (i) the influence of implant material and surface characteristics on the incidence and progression of peri-implantitis, (ii) implant and restorative design elements and the associated risk for peri-implant diseases, and (iii) peri-implant soft-tissue level changes and patient-reported outcomes following peri-implantitis treatment. Consensus statements, clinical recommendations, and implications for future research were discussed within the group and approved during plenary sessions. Results: Data from preclinical in vivo studies demonstrated significantly greater radiographic bone loss and increased area of inflammatory infiltrate at modified compared to non-modified surface implants. Limited clinical data did not show differences between modified and non-modified implant surfaces in incidence or progression of peri-implantitis (SR). There is some evidence that restricted accessibility for oral hygiene and an emergence angle of >30 combined with a convex emergence profile of the abutment/prosthesis are associated with an increased risk for peri-implantitis (CR). Reconstructive therapy for peri-implantitis resulted in significantly less soft-tissue recession, when compared with access flap. Implantoplasty or the adjunctive use of a barrier membrane had no influence on the extent of peri-implant mucosal recession following peri-implantitis treatment (SR).
Background and Objective: Macrophages’ cytokine expression and polarization play a substantial role in the host's “destructive” inflammatory response to periodontal and peri‐implant pathogens. This study aimed to evaluate cell viability, anti‐inflammatory activity, and macrophage polarization properties of different cranberry concentrates.
Methods: THP‐1 cells (monocytic line) were treated with phorbol myristic acid to induce macrophage differentiation. Human gingival fibroblasts (HFIB‐G cell line), osteosarcoma‐derived osteoblasts (SAOS‐2 cell line), and induced macrophages were treated with cranberry concentrates at 25, 50, and 100 µg/mL for 120 seconds, 1 hour and 24 hours. Untreated cells at the same time points served as controls. For anti‐inflammatory analysis, induced macrophages exposed to cranberry concentrates (A‐type PACs) were stimulated with lipopolysaccharides (LPS) derived from E coli for 24 hours. Cell viability, interleukin (IL)‐8, IL‐1 ß, IL‐6, and IL‐10 expression of LPS‐stimulated macrophages, and macrophage polarization markers were evaluated through determination of live‐cell protease activity, enzyme‐linked immunosorbent assay, and immunofluorescence staining semi‐quantification.
Results: Cranberry concentrates (A‐type PACs) did not reduce HGF, SAOS‐2, and macrophage viability after 24 hours of exposure. Pro‐inflammatory cytokine expression (ie IL‐8 and IL‐6) was downregulated in LPS‐stimulated macrophages by cranberry concentrates at 50 and 100 µg/mL. Anti‐inflammatory IL‐10 expression was significantly upregulated in LPS‐stimulated macrophages by cranberry concentrates at 100 µg/mL after 24 hours of exposure. M1 polarization significantly decreased when LPS‐stimulated macrophages were exposed to cranberry concentrates. High levels of positive M1 macrophages were present in all untreated control groups. M2 polarization significantly increased at all LPS‐stimulated macrophages exposed to cranberry concentrates for 1 and 24 hours.
Conclusion: Cranberry‐derived proanthocyanidins may have the potential to act as an anti‐inflammatory component in the therapy of periodontal and peri‐implant diseases.
Objectives: To evaluate peri-implant tissue dimensions following nonsurgical (NS) and surgical therapy (S) employing different decontamination protocols of advanced ligature-induced peri-implantitis in dogs.
Material & Methods: Peri-implantitis defects (n = 5 dogs, n = 30 implants) were randomly and equally allocated in a split-mouth design to NS or S treatment using either an Er:YAG laser (ERL), an ultrasonic device (VUS), or plastic curettes + local application of metronidazole gel (PCM), respectively. Horizontal bone thickness (hBT) and soft tissue thickness (hMT) were measured at different reference points: (v0) at the marginal portion of the peri-implant mucosa (PM); (v1) at 50% of the distance from PM to bone crest (BC); (v2) at the BC; (v3) at the most coronal extension of the bone-to-implant contact. Vertical peri-implant tissue height was calculated from PM to BC.
Results: All of the treatment groups showed a gradual hMT increase from v0 to the v2 reference point, followed by a reduction from v2 to the v3 region. The S-VUS subgroup tended to be associated with higher hMT values at the v0 region than the NS-VUS subgroup (0.44 mm versus 0.31 mm). PM-BC distance varied from 2.22 to 2.83 mm in the NS group, and from 2.07 to 2.38 in the S group.
Conclusion: Vertical and horizontal peri-implant tissue dimensions were similar in different treatment groups.
The prevalence of peri-implant diseases around subcrestally placed implants: a cross-sectional study
(2021)
Objectives: To evaluate the prevalence of peri-implant health, peri-implant mucositis or periimplantitis for subcrestally placed implants (1–3 mm) on the short-, medium- and long term.
Material and Methods: Two hundred patients were enrolled in this cross-sectional study that were treated and screened during regular maintenance visits at one university center. A total of 657 implants were evaluated. Peri-implant health and diseases were assessed according to predefined case definitions. Binary logistic regression was used to assess the correlation with local and systemic factors.
Results: After a median function time of 9.36 ± 6.44 years (range: 1–26 years), the prevalence of peri-implant mucositis and peri-implantitis was 66.5% and 15.0%, at the patient level, corresponding to 62.6% and 7.5%, at the implant level, respectively. Peri-implantitis was significantly associated with patients’ history of periodontitis (odds ratio, OR 5.33).
Conclusion: Peri-implant diseases were a common finding around subcrestally placed implants.