Refine
Document Type
- Preprint (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential applications in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of the wild-type CbFDH at cryogenic and ambient temperatures as well as Val120Thr mutant at cryogenic temperature determined at the Turkish Light Source "Turkish DeLight". The structures reveal new hydrogen bonds between Thr120 and water molecules in the mutant CbFDH's active site, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, our findings provide invaluable insights into future protein engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.
Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential applications in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of the wild-type CbFDH at cryogenic and ambient temperatures as well as Val120Thr mutant at cryogenic temperature determined at the Turkish Light Source "Turkish DeLight". The structures reveal new hydrogen bonds between Thr120 and water molecules in the mutant CbFDH's active site, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, our findings provide invaluable insights into future protein engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.