Refine
Document Type
- Article (4)
- Conference Proceeding (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Genetics (1)
- Genome-wide association studies (1)
- SARS-CoV-2 (1)
- Viral infection (1)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
The elastic alpha scattering to backward angles has been studied for 40,42,44,48Ca between 40.7 and 72.3 MeV. The cross sections for 40Ca are larger than those for the higher isotopes up to the highest energies. They show backward increases that disappear above 50 MeV. The enhancement factor for 40Ca over 42,44Ca varies smoothly with energy. 48Ca does also show a backward cross-section enhancement over 42,44Ca. alpha -cluster rotational bands in the 44Ti compound state, four-nucleon correlations in 40Ca, and the l-dependent optical model are discussed as approaches to understand the anomaly. The rotator model appears to agree qualitatively with the experimental data. It involves rotational bands extending at least up to J=16 in 44Ti.
We explore the phase diagram of two flavour QCD at vanishing chemical potential using dynamical O(a)-improved Wilson quarks. In the approach to the chiral limit we use lattices with a temporal extent of Nt = 16 and spatial extent L = 32;48 and 64 to enable the extrapolation to the thermodynamic limit with small discretisation effects. In addition to an update on the scans at constant k, reported earlier, we present first results from scans along lines of constant physics at a pion mass of 290 MeV.We probe the transition using the Polyakov loop and the chiral condensate, as well as spectroscopic observables such as screening masses.
We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.
We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.