Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Mössbauer spectroscopy (1)
- V/Sc (1)
- alcoholic liver disease (1)
- apoptosis (1)
- cellular toxicity (1)
- cytochrome P450 (1)
- cytokines (1)
- fibrosis (1)
- inflammation (1)
- metasomatism (1)
Institute
- Medizin (2)
- Geowissenschaften (1)
- Geowissenschaften / Geographie (1)
- Physik (1)
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium
(2017)
We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~ 100 km depth could have locally destabilised any pre-existing diamond or graphite.
The multi-valence nature of vanadium means that its geochemical behaviour will be ƒO2-dependent, so that its concentration or V/Sc (or V/Ga), can serve as proxies for oxidation state in mantle peridotites. Compared to Fe3+/Fe2+-based equilibria, such trace elements may be less sensitive to metasomatic processes. To investigate these systematics, we have measured V, Sc, Ga and Fe3+ contents in clinopyroxene from well-characterised spinel peridotite xenoliths from the Massif Central, France. These samples were metasomatised by a variety of agents with different oxidation states.V contents can be modified by metasomatic interactions, and other geochemically similar elements including Sc and Ga can also be added, removed or remain constant. A link between V/Sc and Fe3+-Fe2+ equilibria is apparent. Partial removal of V is caused by different metasomatic agents; the common factor is that all agents were significantly more oxidised than the initial ambient mantle peridotite. This extraction can be understood by a decreasing partition coefficient for V for ΔlogƒO2 > ~FMQ-2. Considering that mineral/melt partitioning of V decreases similarly for all peridotite minerals, the bulk-rock V/Sc will also change during relatively oxidising metasomatic interactions and mirror the results obtained for clinopyroxene.
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.