Refine
Year of publication
Document Type
- Article (68)
- Working Paper (1)
Language
- English (69)
Has Fulltext
- yes (69)
Is part of the Bibliography
- no (69)
Keywords
- Quarkonium (2)
- BESIII (1)
- Branching fraction (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Collectivity (1)
- Correlation (1)
- Di-hadron correlations (1)
- Diffraction (1)
- Elastic scattering (1)
Institute
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
We report a measurement of the observed cross sections of e+ e− → J/ψX based on 3.21 fb − 1 of data accumulated at energies from 3.645 to 3.891 GeV with the BESIII detector operated at the BEPCII collider. In analysis of the cross sections, we measured the decay branching fractions of B(ψ(3686) → J/ψX) = (64.4 ± 0.6 ± 1.6)% and B(ψ(3770) → J/ψX) = (0.5 ± 0.2 ± 0.1)% for the first time. The energy-dependent line shape of these cross sections cannot be well described by two Breit-Wigner (BW) amplitudes of the expected decays ψ (3686) → J/ψX and ψ(3770) → J/ψX. Instead, it can be better described with one more BW amplitude of the decay R(3760)→ J/ψX. Under this assumption, we extracted the R (3760) mass M R (3760 ) = 3766.2 ± 3.8 ± 0.4 MeV/c2, total width Γ tot R ( 3760 ) = 22.2 ± 5.9 ± 1.4 MeV, and product of leptonic width and decay branching fraction
ΓeeR(3760) B[R(3760) → J/ψX] = (79.4 ± 85.5 ± 11.7) eV. The significance of the R(3760) is 5.3σ. The first uncertainties of these measured quantities are from fits to the cross sections and second systematic.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
By analyzing 6.32 fb − 1 of e+ e− annihilation data collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we determine the branching fraction of the leptonic decay D + s → τ + ντ, with τ+ → π + π0¯ντ, to be B D + s → τ + ν τ = (5.29 ± 0.25 stat ± 0.20 syst) %. We estimate the product of the Cabibbo-Kobayashi-Maskawa matrix element |Vcs|and the D + s decay constant f D + s to be f D + s|Vcs| = (244.8 ± 5.8 stat ± 4.8syst) MeV, using the known values of the τ + and D + s masses as well as the D + s lifetime, together with our branching fraction measurement. Combining the value of |Vcs| obtained from a global fit in the standard model and f D + s from lattice quantum chromodynamics, we obtain f D + s = (251.6 ± 5.9 stat ± 4.9syst) MeV and |Vcs| = 0.980 ± 0.023 stat ± 0.019 syst. Using the branching fraction of B D + s → μ + νμ = (5.35±0.21)×10−3, we obtain the ratio of the branching fractions B D + s → τ + ντ/B D +s → μ+νμ = 9.89±0.71, which is consistent with the standard model prediction of lepton flavor universality.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.