Refine
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- genomics (3)
- European beech (2)
- SNP (2)
- Symbiosis (2)
- conservation genetics (2)
- population genetics (2)
- Adaptation (1)
- Agaricales (1)
- Altitudinal (1)
- Basidiomycetes (1)
Similar to chloroplast loci, mitochondrial markers are frequently used for genotyping, phylogenetic studies, and population genetics, as they are easily amplified due to their multiple copies per cell. In a recent study, it was revealed that the chloroplast offers little variation for this purpose in central European populations of beech. Thus, it was the aim of this study to elucidate, if mitochondrial sequences might offer an alternative, or whether they are similarly conserved in central Europe. For this purpose, a circular mitochondrial genome sequence from the more than 300-year-old beech reference individual Bhaga from the German National Park Kellerwald-Edersee was assembled using long and short reads and compared to an individual from the Jamy Nature Reserve in Poland and a recently published mitochondrial genome from eastern Germany. The mitochondrial genome of Bhaga was 504,730 bp, while the mitochondrial genomes of the other two individuals were 15 bases shorter, due to seven indel locations, with four having more bases in Bhaga and three locations having one base less in Bhaga. In addition, 19 SNP locations were found, none of which were inside genes. In these SNP locations, 17 bases were different in Bhaga, as compared to the other two genomes, while 2 SNP locations had the same base in Bhaga and the Polish individual. While these figures are slightly higher than for the chloroplast genome, the comparison confirms the low degree of genetic divergence in organelle DNA of beech in central Europe, suggesting the colonisation from a common gene pool after the Weichsel Glaciation. The mitochondrial genome might have limited use for population studies in central Europe, but once mitochondrial genomes from glacial refugia become available, it might be suitable to pinpoint the origin of migration for the re-colonising beech population.
Growing amounts of genomic data and more efficient assembly tools advance organelle genomics at an unprecedented scale. Genomic resources are increasingly used for phylogenetic analyses of many plant species, but are less frequently used to investigate within-species variability and phylogeography. In this study, we investigated genetic diversity of Fagus sylvatica, an important broadleaved tree species of European forests, based on complete chloroplast genomes of 18 individuals sampled widely across the species distribution. Our results confirm the hypothesis of a low cpDNA diversity in European beech. The chloroplast genome size was remarkably stable (158,428 ± 37 bp). The polymorphic markers, 12 microsatellites (SSR), four SNPs and one indel, were found only in the single copy regions, while inverted repeat regions were monomorphic both in terms of length and sequence, suggesting highly efficient suppression of mutation. The within-individual analysis of polymorphisms showed >9k of markers which were proportionally present in gene and non-gene areas. However, an investigation of the frequency of alternate alleles revealed that the source of this diversity originated likely from nuclear-encoded plastome remnants (NUPTs). Phylogeographic and Mantel correlation analysis based on the complete chloroplast genomes exhibited clustering of individuals according to geographic distance in the first distance class, suggesting that the novel markers and in particular the cpSSRs could provide a more detailed picture of beech population structure in Central Europe.
Chloroplasts are difficult to assemble because of the presence of large inverted repeats. At the same time, correct assemblies are important, as chloroplast loci are frequently used for biogeography and population genetics studies. In an attempt to elucidate the orientation of the single-copy regions and to find suitable loci for chloroplast single nucleotide polymorphism (SNP)-based studies, circular chloroplast sequences for the ultra-centenary reference individual of European Beech (Fagus sylvatica), Bhaga, and an additional Polish individual (named Jamy) was obtained based on hybrid assemblies. The chloroplast genome of Bhaga was 158,458 bp, and that of Jamy was 158,462 bp long. Using long-read mapping on the configuration inferred in this study and the one suggested in a previous study, we found an inverted orientation of the small single-copy region. The chloroplast genome of Bhaga and of the individual from Poland both have only two mismatches as well as three and two indels as compared to the previously published genome, respectively. The low divergence suggests low seed dispersal but high pollen dispersal. However, once chloroplast genomes become available from Pleistocene refugia, where a high degree of variation has been reported, they might prove useful for tracing the migration history of Fagus sylvatica in the Holocene.
Smut fungi are well-suited to investigate the ecology and evolution of plant pathogens, as they are strictly biotrophic, yet cultivable on media. Here we report the genome sequence of Melanopsichium pennsylvanicum, closely related to Ustilago maydis and other Poaceae-infecting smuts, but parasitic to a dicot plant. To explore the evolutionary patterns resulting from host adaptation after this huge host jump, the genome of M. pennsylvanicum was sequenced and compared to the genomes of Ustilago maydis, Sporisorium reilianum, and Ustilago hordei. While all four genomes had a similar completeness in CEGMA analyses, gene absence was highest in M. pennsylvanicum, and most pronounced in putative secreted proteins, which are often considered as effector candidates. In contrast, the amount of private genes was similar among the species, highlighting that gene loss rather than gene gain is the hallmark of adaptation after the host jump to the dicot host. Our analyses revealed a trend of putative effectors to be next to another putative effector, but the majority of these are not in clusters and thus the focus on pathogenicity clusters might not be appropriate for all smut genomes. Positive selection studies revealed that M. pennsylvanicum has the highest number and proportion of genes under positive selection. In general, putative effectors showed a higher proportion of positively selected genes than non-effector candidates. The 248 putative secreted effectors found in all four smut genomes might constitute a core set needed for pathogenicity, while those 92 that are found in all grass-parasitic smuts, but have no ortholog in M. pennsylvanicum might constitute a set of effectors important for successful colonization of grass hosts.
Background: Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.
Results: Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery.
Conclusions: The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.
Background: Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes.
Results: Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes.
Conclusions: Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host.
Microthlaspi erraticum is widely distributed in temperate Eurasia, but restricted to Ca2+-rich habitats, predominantly on white Jurassic limestone, which is made up by calcium carbonate, with little other minerals. Thus, naturally occurring Microthlaspi erraticum individuals are confronted with a high concentration of Ca2+ ions while Mg2+ ion concentration is relatively low. As there is a competitive uptake between these two ions, adaptation to the soil condition can be expected. In this study, it was the aim to explore the genomic consequences of this adaptation by sequencing and analysing the genome of Microthlaspi erraticum. Its genome size is comparable with other diploid Brassicaceae, while more genes were predicted. Two Mg2+ transporters known to be expressed in roots were duplicated and one showed a significant degree of positive selection. It is speculated that this evolved due to the pressure to take up Mg2+ ions efficiently in the presence of an overwhelming amount of Ca2+ ions. Future studies on plants specialized on similar soils and affinity tests of the transporters are needed to provide unequivocal evidence for this hypothesis. If verified, the transporters found in this study might be useful for breeding Brassicaceae crops for higher yield on Ca2+-rich and Mg2+ -poor soils.
Background: The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany.
Findings: Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum.
Conclusions: The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.
Tilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.