Refine
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Adaptive sequence evolution (1)
- Animal sociality (1)
- Anisakidae (1)
- Ants (1)
- Chironomidae (1)
- Chironomus piger (1)
- Chironomus riparius (1)
- Fagus sylvatica L. (1)
- Fats (1)
- Foraging (1)
Genomic basis of ecological niche divergence among cryptic sister species of non-biting midges
(2013)
Background: There is a lack of understanding the evolutionary forces driving niche segregation of closely related organisms. In addition, pinpointing the genes driving ecological divergence is a key goal in molecular ecology. Here, larval transcriptome sequences obtained by next-generation-sequencing are used to address these issues in a morphologically cryptic sister species pair of non-biting midges (Chironomus riparius and C. piger).
Results: More than eight thousand orthologous open reading frames were screened for interspecific divergence and intraspecific polymorphisms. Despite a small mean sequence divergence of 1.53% between the sister species, 25.1% of 18,115 observed amino acid substitutions were inferred by α statistics to be driven by positive selection. Applying McDonald-Kreitman tests to 715 alignments of gene orthologues identified eleven (1.5%) genes driven by positive selection.
Conclusions: Three candidate genes were identified as potentially responsible for the observed niche segregation concerning nitrite concentration, habitat temperature and water conductivity. Additionally, signs of positive selection in the hydrogen sulfide detoxification pathway were detected, providing a new plausible hypothesis for the species’ ecological differentiation. Finally, a divergently selected, nuclear encoded mitochondrial ribosomal protein may contribute to reproductive isolation due to cytonuclear coevolution.
Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Secondly, an experimental knockdown of Vg-like A in the fat body caused a reduction in brood care and an increase in nestmate care in young ant workers. Nestmate care is normally exhibited by older workers. We demonstrate experimentally that this task switch is at least partly based on Vg-like A–associated shifts in responsiveness from brood to worker cues. We thus reveal a novel mechanism leading to early behavioral maturation via changes in social cue responsiveness mediated by Vg-like A and associated pathways, which proximately play a role in regulating division of labor.
Background: Factors and processes shaping the population structure and spatial distribution of genetic diversity across a species' distribution range are important in determining the range limits. We comprehensively analysed the influence of recurrent and historic factors and processes on the population genetic structure, mating system and the distribution of genetic variability of the pulmonate freshwater snail Radix balthica. This analysis was based on microsatellite variation and mitochondrial haplotypes using Generalised Linear Statistical Modelling in a Model Selection framework. Results: Populations of R. balthica were found throughout North-Western Europe with range margins marked either by dispersal barriers or the presence of other Radix taxa. Overall, the population structure was characterised by distance independent passive dispersal mainly along a Southwest-Northeast axis, the absence of isolation-by-distance together with rather isolated and genetically depauperated populations compared to the variation present in the entire species due to strong local drift. A recent, climate driven range expansion explained most of the variance in genetic variation, reducing at least temporarily the genetic variability in this area. Other factors such as geographic marginality and dispersal barriers play only a minor role. Conclusions: To our knowledge, such a population structure has rarely been reported before. It might nevertheless be typical for passively dispersed, patchily distributed taxa (e.g. freshwater invertebrates). The strong local drift implied in such a structure is expected to erode genetic variation at both neutral and coding loci and thus probably diminish evolutionary potential. This study shows that the analysis of multiple factors is crucial for the inference of the processes shaping the distribution of genetic variation throughout species ranges. Additional files Additional file 1: Distribution of Radix taxa. Spatial distribution of the Radix MOTU as defined in Pfenninger et al. 2006 plus an additional, newly discovered taxon. This map is the basis for the inference of the species range of R. balthica. Additional file 2: Sampling site table and spatial distribution of diversity indices, selfing estimates and inferred population bottlenecks for R. balthica. Table of sampling site code, geographical position in decimal degrees latitude and longitude, number of individuals analysed with microsatellites (Nnuc), expected heterozygosity (HE) and standard deviation across loci, mean rarefied number of alleles per microsatellite locus (A) and their standard deviation, number of individuals analysed for mitochondrial variation (Nmt), rarefied number of mitochondrial COI haplotypes (Hmt), number of individuals measured for body size (Nsize). Figures A1 - A3 show a graphical representation of the spatial distribution of He, Hmt and, s, respectively. Additional file 3: Assessment of environmental marginality. PCA (principle component analysis) on 35 climatic parameters for the period from 1960 - 2000 from publicly availableWorldClim data. Additional file 4: Inference of a recent climate driven range expansion in R. balthica. Analysis of the freshwater benthos long term monitoring data of the Swedish national monitoring databases at the Swedish University of Agricultural Sciences SLU with canonical correspondence analysis.
Background: Until recently, read lengths on the Solexa/Illumina system were too short to reliably assemble transcriptomes without a reference sequence, especially for non-model organisms. However, with read lengths up to 100 nucleotides available in the current version, an assembly without reference genome should be possible. For this study we created an EST data set for the common pond snail Radix balthica by Illumina sequencing of a normalized transcriptome. Performance of three different short read assemblers was compared with respect to: the number of contigs, their length, depth of coverage, their quality in various BLAST searches and the alignment to mitochondrial genes. Results: A single sequencing run of a normalized RNA pool resulted in 16,923,850 paired end reads with median read length of 61 bases. The assemblies generated by VELVET, OASES, and SeqMan NGEN differed in the total number of contigs, contig length, the number and quality of gene hits obtained by BLAST searches against various databases, and contig performance in the mt genome comparison. While VELVET produced the highest overall number of contigs, a large fraction of these were of small size (< 200bp), and gave redundant hits in BLAST searches and the mt genome alignment. The best overall contig performance resulted from the NGEN assembly. It produced the second largest number of contigs, which on average were comparable to the OASES contigs but gave the highest number of gene hits in two out of four BLAST searches against different reference databases. A subsequent meta-assembly of the four contig sets resulted in larger contigs, less redundancy and a higher number of BLAST hits. Conclusion: Our results document the first de novo transcriptome assembly of a non-model species using Illumina sequencing data. We show that de novo transcriptome assembly using this approach yields results useful for downstream applications, in particular if a meta-assembly of contig sets is used to increase contig quality. These results highlight the ongoing need for improvements in assembly methodology. Keywords: next generation sequencing; short read assembly; Mollusca
Social insects dominate arthropod communities worldwide due to cooperation and division of labor in their societies. This, however, makes them vulnerable to exploitation by social parasites, such as slave‐making ants. Slave‐making ant workers pillage brood from neighboring nests of related host ant species. After emergence, host workers take over all nonreproductive colony tasks, whereas slavemakers have lost the ability to care for themselves and their offspring. Here, we compared transcriptomes of different developmental stages (larvae, pupae, and adults), castes (queens and workers), and sexes of two related ant species, the slavemaker Temnothorax americanus and its host Temnothorax longispinosus. Our aim was to investigate commonalities and differences in group‐specific transcriptomes, whereupon across‐species differences possibly can be explained by their divergent lifestyles. Larvae and pupae showed the highest similarity between the two species and upregulated genes with enriched functions of translation and chitin metabolism, respectively. Workers commonly upregulated oxidation‐reduction genes, possibly indicative of their active lifestyle. Host workers, but not workers of the slavemaker, upregulated a “social behavior” gene. In slavemaker queens and workers, genes associated with the regulation of transposable elements were upregulated. Queens of both species showed transcriptomic signals of anti‐aging mechanisms, with hosts upregulating various DNA repair pathways and slavemaker queens investing in trehalose metabolism. The transcriptomes of males showed enriched functions for quite general terms realized in different genes and pathways in each species. In summary, the strong interspecific commonalities in larvae, pupae, and workers were reflected in the same enriched Gene Ontology (GO) terms. Less commonalities occurred in the transcriptomes of queens and males, which apparently utilize different pathways to achieve a long life and sperm production, respectively. We found that all analyzed groups in this study show characteristic GO terms, with similar patterns in both species.
Effects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from one generation to the next is still not well understood. The aim of this study was to investigate whether the multivoltine midge Chironomus riparius Meigen (1803) responds mainly via acclimation as predicted by current theories or whether rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at three different pre‐exposure temperatures (PET): 14, 20, and 26°C. After three and five generations, respectively, larvae were exposed to three treatment temperatures (TT): 14, 20, and 26°C. Mortality was monitored for the first 48 hr and after emergence. After three generations, significant mortality rate differences depended on an interaction of PET and TT. This finding supports the hypothesis that chironomids respond rapidly to climatic variation via adaptive mechanisms and to a lesser extent via phenotypic plasticity. The result of the experiment indicates that three generations were sufficient to adapt to warm temperature, decreasing the mortality rate, highlighting the potential for chironomids to rapidly respond to seasonally changing conditions.
The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques—Illumina, PacBio, and Oxford Nanopore—we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.
The recent advances in molecular methods and data processing have facilitated research on anisakid nematodes. While most research efforts were made regarding the genus Anisakis, since this genus is held responsible for the majority of reported clinical signs, there is still a demand for data on the genus Pseudoterranova. Several case studies of severe invasive anisakidosis affecting various organs caused by species of the P. decipiens complex have been described. To better understand the way these parasites might infest their fish host, we examined whether parasite location within the fish host affects gene expression. A de novo assembly of the transcriptome of Pseudoterranova bulbosa, isolated from North Atlantic cod, was analysed for patterns of differential gene expression between samples taken from liver and viscera. We additionally searched for homologs to known nematode allergens, to give a first estimate of the potential allergenicity of P. bulbosa. There was a subtle difference in the gene expression of samples taken from liver and viscera. Seventy genes were differentially expressed, 32 genes were upregulated in parasites isolated from liver and 38 genes were upregulated in parasites from viscera. Homologs of five nematode allergens were identified among the genes expressed by P. bulbosa. Our transcriptome of P. bulbosa will be a valuable resource for further meta-analyses and resequencing projects.
In the course of global climate change, central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated SNPs throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. A SNP-assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.
Background: Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion.
Results: By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Ae. aegypti, sampled along an altitudinal temperature gradient in Nepal (200- 1300m), we identify adaptive traits and describe the species’ genomic footprint of climate adaptation to colder ecoregions. We found two clusters of differentiation with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300m) and all other lowland populations (≤ 800 m). We revealed non-synonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern.
Conclusion: Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. This finding either indicates a differential invasion history to Nepal or local high-altitude adaptation explaining the population’s phenotypic cold tolerance. In any case, this highland population can be assumed to carry pre-adapted alleles relevant for the species’ invasion into colder ecoregions worldwide that way expanding their climate niche.