### Refine

#### Document Type

- Conference Proceeding (10)
- Article (5)

#### Language

- English (15)

#### Has Fulltext

- yes (15)

#### Is part of the Bibliography

- no (15)

#### Keywords

- BCS phase (1)
- isospin (1)
- lattice QCD (1)

#### Institute

- Physik (15)

The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbatively.

The introduction of non-orthogonal electric and magnetic fields in the QCD vacuum enhances the weight of topological sectors with a nonzero topological charge. For weak fields, there is a linear response for the expectation value of the topological charge. We study this linear response and relate it to the QCD correction to the axion-photon coupling. We also analyse the magnetic field dependence of the topological susceptibility for a range of temperatures around Tc. In this work we use lattice simulations with improved staggered quarks at physical masses, including background magnetic and (imaginary) electric fields.

We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the extension of the EoS to small non-zero baryon chemical potentials via Taylor expansion.

The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of quarks and gluons under such extreme conditions, we use lattice QCD simulations with 2+1 staggered fermion flavors with physical quark masses and an inhomogeneous magnetic background for a range of temperatures covering the QCD phase transition. We assume a 1/cosh2 function to model the field profile and vary its strength to analyze the impact on the computed observables and on the transition. We calculate local chiral condensates, local Polyakov loops and estimate the size of lattice artifacts. We find that both observables show non-trivial spatial features due to the interplay between the sea and the valence effects.

The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass.

We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition.

According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of u and d¯ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC) of charged pions at μI≥mπ/2. With lattice results, showing some indications that the deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify signatures of the superfluid BCS phase.

We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.

We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.

Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the Nf=3 symmetric line on the Columbia plot, and to compare the results with those obtained with other fermion discretizations.